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Abstract—The paper considers two fractional-

differential models of convective diffusion with mass 

exchange and proposes a decision-making algorithm for 

determining the optimal model at the time of 

concentration field observation. As for soils of fractal 

structure, direct experimental determination of model 

parameters’ values and type of mass exchange process is in 

many cases impossible, calibration and determination of 

the most adequate models is performed mainly solving 

inverse problems by, in particular, meta-heuristic 

algorithms that are computationally complex. In order to 

reduce the computational complexity, we study the 

qualitative differences between diffusion processes 

described by fractional-differential models with non-local 

mass exchange on the base of the Caputo derivative and 

local non-linear mass exchange based on the non-

equilibrium sorption equation that corresponds to the 

description by the Caputo-Fabrizio derivative. We 

determine under which conditions both models within a 

given accuracy describe the same set of measurements at a 

certain moment of time. When the solutions are close at a 

certain initial stage of process development, the model with 

the Caputo derivative describes its faster approach to a 

steady state. Based on the obtained estimates of differences 

in solutions, a decision-making algorithm is proposed to 

determine the most accurate model and the values of its 

parameters concurrently with the acquisition of 

measurements. This algorithm’s usage reduces the time 

spent on solving inverse calibration problems. 
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I.  INTRODUCTION 

The paper deals with certain issues arising while calibrating 
models of convective diffusion with mass exchange in soils of 
fractal structure. Such models [1, 2] describe diffusion 
processes with the transition from normal diffusion to sub-
diffusion and subsequent return to normal diffusion mode [2]. 

Since the exact determination of parameters’ values for 
fractional-differential models is currently an open problem, 

selecting (fitting) them in a way to make the model best 
describe the available measurements remains in many cases the 
only approach when applying them in practice. Such fitting can 
be performed particularly using meta-heuristic algorithms that 
are computationally complex. As the type of mass transfer 
processes is also usually unknown, the problem of choosing the 
most accurate model further increases the complexity of 
accurate forecasting of diffusion processes, which include, e.g., 
pollution propagation that should be predicted promptly in the 
case of accidents. In such a situation, it is important to develop 
approximate decision-making algorithms that will allow 
choosing the model that is the most accurate for the observed 
process. 

As it was shown by the results of the comparisons given 
in [2], with the best chosen parameter values, the solutions by 
different fractional-differential models of diffusion processes 
that are close at the initial stages of process development  
further become significantly different. So it is relevant to 
determine the qualitative differences in the anomalous 
diffusion processes described by different models, solutions of 
which initially differ from each other not more than by the 
level of measurement errors. The mathematical description of 
these differences allows determining the most accurate model 
in the process of observing changes in pollutant concentration 
fields. 

II. INITIAL-BOUNDARY VALUE PROBLEMS AND NUMERICAL 

METHOD 

The two-dimensional fractional-differential equation of 
convective diffusion of soluble substances with mass exchange 
can be stated as [3] 
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where C  is the concentration of the substance in liquid 

(mobile) phase, N  is its concentration in solid (immobile) 

phase,   is the porosity, ),,( yxxx  =  ),( yxyy  =  are the 

components of filtration velocity vector, constD =  is the 

convective diffusion coefficient, xy  is the Laplace operator 

with respect to the variables yx, , 
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 is the Caputo derivative of the 

order )10(   , )(z  is the gamma function. 

We consider two options for modelling the dynamics of 
particle outflow into the immobile phase. According to [4] it 
can be described as 
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where   is the mass exchange rate parameter.  

The second considered model is obtained by adding to the 
equation (1) the non-equilibrium sorption equation [5, 6] 
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where ,1 =    is the Henry’s coefficient [7],   is the 

mass exchange rate parameter. 

Similarly to [4], solving (3) with respect to N  with the 

initial conditions 0
00

==
== tt
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where CDt

CFC 
 is the fractional Caputo-Fabrizio derivative [8] 

or the order  . 

Thus, it can be noted that the main difference between the 
mass exchange equations (2) and (3) is the form of integral 
operator’s kernel - power in (2) and exponential in (3). 

To simplify the description, we consider the filtration 
problem that has an analytical solution. Let the mass transfer of 

contaminants from a reservoir occurs in the domain zG  given 

in [9], Fig. 1a. For such a scheme, we can perform a transition 

into the domain of complex flow potential G ,  i+= (  

is the flow function), which has the form of a horizontal half-
band ([9], Fig. 1b), using a conformal mapping method. The 
closed-form solution of the corresponding filtration problem in 
this domain is well-known. 

Setting the concentration 0C  of solute at the inlet AC  of 

the filtration stream, the boundary and initial conditions for the 
models (1), (2), and (1), (3) can be written in the form 
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where n  is the outer normal to the corresponding curve, AB  is 

the flow symmetry axis, CB  is the flow line ([9], Fig.1а). 

Numerical solution of initial-boundary value problems for 

the models (1), (2) and (1), (3) is performed according to the 

locally one-dimensional schemes [10] given in [11] and [12], 

respectively. We use a uniform finite-difference grid, which 

covers the domain of complex flow potential restricted from 

the right by the line )1( 00 =  ; first-order finite-

difference analogue of the fractional differentiation operator; 

the Thomas algorithm [10] for solving three-diagonal linear 

equations systems obtained after discretization. 

The problem of theoretical analysis of the convergence and 

stability of the used schemes is beyond the scope of this paper. 

For schemes of this class, they are considered for the diffusion 

equation, particularly, in [13]. 

III. ESTIMATES OF DIFFERENCES BETWEEN PROBLEMS’ 

SOLUTIONS 

The models (1), (2) and (1), (3) describe diffusion 

processes with different mechanisms of mass exchange - non-

local in time but linear in the case of equation (2) and local but 

non-linear in the case of equation (3). When modelling real 

processes, it is necessary to calibrate the models by 

determining the values of their parameters based on available 

measurements that can be inaccurate. Given that the 

mechanism of mass exchange in the particular case is often 

unknown, identifying the model that best describes the 

observed process is also urgent. Hence, we study the 

conditions under which both models, within a given accuracy, 

describe the same set of measurements obtained at a specific 

point in time, that is, when the solutions obtained by the 

models (1), (2) and (1), (3) differ by no more than a given 

value. 

We construct the estimates of the maximal difference 

between the solutions upon the models (1), (2), and (1), (3) 

and the solution 1C  of the diffusion equation (1) without 

taking mass exchange into account. 

Let 112 += CC  satisfies the equations (1), (2). Then, 

subtracting from the equation (1) for 2C  the corresponding 

equation without taking mass exchange into account for 1C , 

we obtain 
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the upper estimate of the maximal difference has the form 
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For the solution 213 += CC  of the model (1),(3) we have 
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Since the propagation of the concentration front is delayed 

when mass exchange is considered comparing to the situation 

of modelling diffusion without taking it into account [11, 12], 

the maximal difference between the solutions of (1), (2) and 

(1), (3) can be estimated as ||),( 1232  −CCd . 

IV. ALGORITHM FOR DECISION-MAKING IN THE PROCESS OF 

FORECAST 

When it is necessary to forecast the observed anomalous 

diffusion process in a situation when the actual mass exchange 

mechanism is unknown and, accordingly, it is impossible to a 

priori determine the most appropriate mathematical model, we 

propose the following decision-making algorithm: 

• Assume that we have the measurements C  of the 

concentration in the moments of time nii ,...,1, = . 

Perform a calibration of the model (1), (2), that is, 
select, e.g. using some meta-heuristic optimization 
algorithm, the values of the parameters under which it 
best describes the available measurements; 

• Carry out simulations with the defined parameter 

values and with 0= . Obtain the values of maximal 

absolute differences nii ,...,1|,)(|max 1 = . Use the 

estimate (4) to find the value of 3M ; 

• Solve the system of non-linear equations 

niKM ii ,...,1|,)(|max)( 123 ==  , e.g. by some 

gradient method, and obtain the values of the 
parameters of the model (1), (3) that, according to the 
estimate (5), allow describing the process close to the 
observed one; 

• Perform predictive modelling by (1), (2) and (1), (3) 

for nt  ; 

• When receiving the next series of measurements, 
compare them with the results of the predictive 
modelling and select the model that best describes 
them for further forecast. 

The usage of this algorithm makes it possible to determine 

the mathematical model that is more relevant to the observed 

process, reducing the time spent on solving inverse problems 

for calibration as it is not needed to be performed for all 

considered models. 

V.  EXPERIMENTAL COMPARISON OF THE SOLUTIONS 

Performing computational experiments, we determine the 

values of the parameters β* and α* of the model (1), (3) and 

estimate the constant 3M  according to the above-described 

algorithm for the fixed parameters   and γ of the model (1), 

(2) using solutions at certain moments of time and study how 

in such a situation the difference between solutions behave at 

other moments. 

We got the base solutions for different  , γ at β=0.8, 

σ=0.8, L=22, 5/1=H , )5.2/(52 =k , 50 = , m=20, 

n=30, grid size of 20x30 cells, and τ=0.0001 for 

0.001,0.002,...,0.01t = . The calculated values of β* and α* 

that allow obtaining solutions close to the solutions by the 

model (1), (2), are given in Table 1. 

TABLE I.  VALUES OF MODELS’ COEFFICIENTS 

  γ α* β* 
3M  

0.2 0.6 23,03 30 1,35 

0.6 0.6 7,24 103 1,22 

0.2 1.0 3,75 449 0,96 

0.7 0.8 2,76 606 0,95 

0.6 1.0 1,3 2876 0,72 

Considering the dependencies of the models’ coefficients 

on the maximum absolute differences ("delays") from the 

solution of the problem without taking mass exchange into 

account, let us note that for the model (1), (3), the necessary 

value of β* increases exponentially with the increase of delay 

and α* decreases with the order x-1.28. The coefficient of 

determination for both dependencies here is greater than 

R2=0.94. The parameters of the model (1), (2) with the Caputo 

derivative are not so clearly correlated with the maximal 

absolute difference from the solution without taking mass 

exchange into account, but for both of them the dependencies 

are close to linear. So, regarding the convergence of 

algorithms for solving inverse problems of parameters’ values 

identification, it is generally more convenient to use the model 

(1), (2) because the sensitivity of its parameters to changes in 

input data is close to linear. 

The maximal differences 1 , 2  between the solutions by 

the models (1), (2) and (1), (3) and the solution by the model 

that does not take mass exchange into account along with their 

estimates according to (4), (5) at different moments of time are 

depicted for the case of 7.0= , 8.0=  ( 606* = , 

764.2* = ) in Fig. 2. The changes in time of the difference 

between the solutions by the models (1), (2) and (1), (3) for 

different parameters’ values and their estimates according to 

(4), (5) are shown in Fig. 3. 
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Fig. 1. Maximal absolute differences comparing with the solution by the 
model without taking mass exchange into account and their estimates for 

7.0= , 8.0=  ( 606* = , 764.2* = ) 

 

Fig. 2. Differences between the solutions upon the models (1),(2) and 

(1), (3) for 7.0= , 8.0=  ( 606* = , 764.2* = ) 

In general, adequately describing the tendency of changes 

in the differences between the solutions obtained by the 

considered models, estimates (4), (5) show that at 1  and 

t>0.01 the model (1), (2) describes the process of 

concentration field’s convergence to a steady state faster than 

the model (1), (3). When 1= , the differences between the 

solutions are, as expected, small. 

Talking about the speed of computations, we can note that 

in the conducted experiments, comparing with the simulation 

without taking mass exchange into account, the time spent on 

the simulation at t=0.01 for the model (1), (3) was greater by 

~6%. In the case of the model (1), (2), it was greater by ~12% 

for γ=1 and by ~31% for γ≠1. The convergence rate of the 

finite-difference scheme for the model (1), (3) was higher 

when τ decreases comparing to the model (1), (2). 

VI. CONCLUSIONS 

Summarizing we can draw the following conclusions: 

• The models (1), (3), and (1), (2) allow describing 
anomalous diffusion processes that, within a given 
measurement accuracy, coincide at a certain time 
interval. With the further development of the process, 
the model (1), (2) with the Caputo derivative describes 
its faster convergence to a steady state when 1 ; 

• The dependencies of the model’s (1), (2) parameters on 
the delay when comparing to the solution by the model 
without taking mass exchange into account are more 
uniform than for the model (1), (3), making the model 
(1), (2) with the Caputo derivative a better choice for 
the algorithms for solving inverse parameters' 
identification problems; 

• The computation speed of the finite-difference scheme 
for the model (1), (3) is higher than for the case of the 
model (1), (2) due to the lower computational 
complexity and better convergence rate. 
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