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Abstract—The problem of plotting the flight path of an aircraft 

based on flight data containing numerous measurement errors is 

investigated. A theoretical (continuous) model of the flight data 

fusion problem is proposed in the form of a boundary value 

problem for a system of differential equations with unknown 

coefficients. The application of the Newton–Raphson iteration 

method for calculating the sought-for coefficients is described. 
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I.  INTRODUCTION 

When first introduced in aviation, flight data recorder 
systems were an important step in the development of aviation. 
A flight data recorder is primarily used for studying the behavior 
of the aircraft after flight to establish what happened in the event 
of an accident. The data recorded for this purpose include yaw, 
pitch, and roll angles, which determine the aerial orientation of 
the aircraft, loads expressing forces that determine the 
movement of the aircraft, absolute speed, readings of the 
barometric altimeter and other parameters. Determining the 
current location of the aircraft based on flight data received from 
measuring instruments is also one of the key problems in 
military aviation. The problem of determining the location and 
direction of the aircraft during flight, as a rule, is due to the 
difficulties of determining the aerial orientation the pilot 
experiences when performing combat tasks in complicated 
operating conditions. 

Nowadays, aircrafts are equipped with more advanced 
models of measuring instruments. These devices, the first 
models of which appeared in the first half of the twentieth 
century and which have been known in science as “black box”, 
include gyroscopes, accelerometers, barometric altimeters, 
speed meters and other devices operating on various laws of 
fundamental physics.  

The use of the black box has traditionally been aimed at 
solving the following problems: - preventing future possible 
adverse situations by analyzing the causes of various flight 

incidents; - assessing the technical condition of various 
instruments and equipment of the aircraft; - assessing pilot’s 
skills in performing flight tasks. To solve these problems, 
mathematical models of devices based on the physical principle 
and numerous software systems used in various fields of the 
aviation industry have been developed. 

As a result of intensive development of information 
technology, GPS systems are now considered navigation 
systems for everyday use. However, it is generally known that it 
is impossible to establish the degree of adequacy of performance 
for a military mission by means of GPS. One of the reasons is 
that GPS signals come in intermittently, coordinates are 
determined with errors and, most importantly, GPS signals in 
areas of planned military operations cannot be received by 
appropriate devices as a result of noise pollution. Therefore, the 
problem of determining a military aircraft's location in the air 
and its orientation relative to the Earth on the basis of the data 
recorded in its black box arises.  

It should be noted that the indicators recorded by navigation 
devices in actual flight contain various errors and distortions, 
and many problems arise during their processing. However, 
open sources generally do not give a detailed description of these 
problems, and information on the relevant studies is not 
disclosed for obvious reasons. There are also some papers by 
Azerbaijani researchers on the problems of flight data 
processing worth mentioning: [1 - 5]. 

Therefore, in this paper, we investigate the problem of 
restoring the flight path of an aircraft after flight, which is caused 
by errors in the black box data, proposing a data fusion method 
to solve it. 

 

II. THE ESSENCE OF THE PROBLEM 

Based to the operating principle, navigation devices used in 
airplanes can be grouped into two categories: “strapdown” and 
“platform-type” systems. The first category includes, for 
instance, a TEST-UZ type navigation device [6]. This type of 
devices is used in An-24, MiG-AT, SU-24, SU-27 and other 
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aircrafts. An example of the second category of navigation 
devices is the IKV-1 navigation system [7]. This type of devices 
is used, for instance, in aircrafts like Yak-38, MIG-23B, MIG-
27, SU-17. 

The aforementioned navigation devices measure such 
aircraft parameters as loads (accelerometer), yaw, pitch and roll 
angles (gyroscope), velocity (Pitot tube), flight altitude 
(barometric altimeter). Depending on the operating principle of 
the device, these quantities are recorded in the coordinate system 
relative to the Earth. For clarity, we shall briefly explain the 
quantities used in this paper. 

Let us introduce a rectangular inertial coordinate system 
𝑂𝑥𝑦𝑧, fixing it to the point of aircraft’s liftoff from the runway. 
The coordinate axes are directed, as is customary in the aviation 
literature, as follows: the 𝑂𝑥  and 𝑂𝑧  axes located on a 
horizontal plane are directed along the adopted references, and 
the 𝑂𝑦 axis is directed perpendicular upward from the earth’s 
surface. 

 𝜓 – the yaw angle is the angle between the aircraft’s flight 
direction and the direction selected as the reference. As a rule, 
the northern direction of the horizon, or, in some cases, the 
eastern direction, is selected as the reference. Suppose the 
direction of the 𝑂𝑥 axis is taken as the reference direction. 

𝒏 = (𝑛𝑥, 𝑛𝑦 , 𝑛𝑧) – by the load we understand the ratio of the 

sum of all aerodynamic forces acting on the aircraft, except 
gravity, and engine thrust to gravity. We can write the 
components of the load vector relative to the Earth by applying 
transformation formulas written on the basis of orientation 
angles. This allows calculating the acceleration created by the 
forces acting on the aircraft in the coordinate system relative to 
the Earth. 

As noted above, numerous errors occur when velocity, loads, 
orientation angles and other important flight parameters of the 
aircraft are measured, digitized and recorded in the black box. 
Therefore, the restoration of the flight path with adequate 
accuracy, directly using these indicators after flight, becomes a 
challenging task. 

Ideally, the first and second derivatives of the actual flight 
path 𝒔(𝑡) = (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)), the equation of which is written 
with respect to the inertial system, should coincide with the 
velocity 𝒗(𝑡) and acceleration 𝒂(𝑡), respectively, obtained from 
the primary processing of black box data. However, we actually 
observe 𝒔′(𝑡) ≠ 𝒗(𝑡) and 𝒔′′(𝑡) ≠ 𝒂(𝑡), and the readings ℎ(𝑡) 
of the barometric altimeter differ from the real function 𝑦(𝑡). 

In this study, a flight data fusion hypothesis is put forward, 
suggesting that there is a linear combination of indicators 
recovered from flight data such that its value coincides with the 
corresponding combination recorded for the actual flight path. 

Thus, it is assumed that the movement of an aircraft 
(airplane) in flight is described by a differential equation with 
constant coefficients that depend mainly on its weight and 
aerodynamic properties.  

Therefore, if we neglect the aircraft mass variation, taking 
into account its smallness relative to the weight of the entire 
machine, then the motion equation will be simplified 
substantially. When modeling the motion, we shall not go into 

the nuances of aerodynamics, assuming that its effect is 
indirectly reflected in the fusion coefficients. The working 
hypothesis is based on the following mathematical 
considerations: 

1) When setting up a linear differential equation with respect 
to a prescribed function 𝑣 = 𝑣(𝑡) , 𝑡 ∈ [0, 𝑇] , using any 
reasonable differential operation 𝐿, the right-hand side of the 
equation will be the function 𝐹 = 𝐿𝑣 . The equation for the 
sought-for function 𝑢 = 𝑢(𝑡) is written as 𝐿𝑢 = 𝐹. 

2) If the initial data coincide 𝐵𝑢|𝑡=0 = 𝐵𝑣|𝑡=0, the solution 
𝑢(𝑡)  of the equation 𝐿𝑢 = 𝐹  coincides with the function 
generating the right-hand side: 𝑢(𝑡) = 𝑣(𝑡), 𝑡 ∈ [0, 𝑇]. 

3) If different approximations of 𝑣 are used in the rule of 
generation 𝐹 = 𝐿𝑣, then the value of 𝑢(𝑡) at the point 𝑡 = 𝑇 can 
coincide with the value of 𝑣(𝑇)  for some specially selected 
coefficients of the operation 𝐹. 

III. MATHEMATICAL MODEL OF THE FUSION PROBLEM  

Mathematically, the essence of the fusion method is 
determining the vector of the aircraft’s location 𝒔 =
(𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)) as a solution to the following system of linear 
differential equations 

 

{
 
 

 
 𝑥

′′ − 𝑘1𝑥
′ = 𝑎𝑥 − 𝑘1√𝑣

2 − (𝑦′)2cos𝜓;

𝑦′′ − 𝑘2𝑦 = 𝑎𝑦 − 𝑘2ℎ;

𝑧′′ − 𝑘3𝑧
′ = 𝑎𝑧 − 𝑘3√𝑣

2 − (𝑦′)2sin𝜓;

𝑡 ∈ (0, 𝑇),

 () 

with initial conditions at 𝑡 = 0  

 {
𝑥(0) = 0, 𝑦(0) = 0, 𝑧(0) = 0;

𝑥′(0) = 𝑥0, 𝑦′(0) = 𝑦0, 𝑧′(0) = 𝑧0;
 () 

where  𝑎𝑥 , 𝑎𝑦 , 𝑎𝑧  are longitudinal, vertical and lateral 

accelerations, respectively; ℎ  is the estimate of baro-inertial 
altitude; 𝜓 is the yaw angle; 𝑣 = 𝑣(𝑡) is the actual velocity; 𝑘1, 
𝑘2 , 𝑘3  are the fusion filter tuning coefficients; 𝑇  is flight 
duration, (𝑥0, 𝑦0, 𝑧0)  is aircraft’s velocity at the moment of 
liftoff from the runway.  

In contrast to [5], the derivative of h is not included in system 
(1), since numerical experiments show that taking such a term 
into account does not lead to a significant improvement in the 
results. 

The structure of problem (1)-(2) is such that it can be split 
into separate tasks and solved successively: first with respect to 
𝑦 , then with respect to 𝑥  and 𝑧 . In this case, an explicit 
dependence of the functions 𝑦, 𝑥 and 𝑧 on the fusion parameters 
𝑘1, 𝑘2, 𝑘3 can be represented as follows: 

 𝑥 = 𝑥(𝑘1, 𝑡);  𝑦 = 𝑦(𝑘2, 𝑡);  𝑧 = 𝑧(𝑘3, 𝑡)  

The coefficients 𝑘1 , 𝑘2 , 𝑘3  will be determined from the 
conditions of minimization of residuals 

 |𝑥(𝑘1, 𝑇) − 𝑥𝑇| |𝑦(𝑘2, 𝑇) − 𝑦𝑇| |𝑧(𝑘3, 𝑇) − 𝑧𝑇|  

where (𝑥𝑇 , 𝑦𝑇 , 𝑧𝑇)  is the relative coordinates of the arrival 
airfield. 
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IV. SOLUTION 

First, the approximate value of the coefficient 𝑘2 is 

determined. Assuming 𝑘2 > 0, denote 𝛼 = √𝑘2.  

From (1)-(2), the explicit representation of the function 
𝑦(𝑘2, 𝑡) can be written as follows: 

 𝑦(𝑘2, 𝑡) =
𝑦0(𝑒

𝛼𝑡−𝑒−𝛼𝑡)

2𝛼
+  

 ∫
𝑒𝛼(𝑡−𝜏)−𝑒−𝛼(𝑡−𝜏)

2𝛼
(𝑎𝑦(𝜏) − 𝛼

2ℎ(𝜏)) 𝑑𝜏
𝑡

0
 () 

From the condition of residual minimization for 𝑦(𝑘2, 𝑇), 
we have 

 
𝑦0(𝑒

𝛼𝑇−𝑒−𝛼𝑇)

𝛼
+  

 ∫
𝑒𝛼(𝑇−𝜏)−𝑒−𝛼(𝑇−𝜏)

2𝛼
(𝑎𝑦(𝜏) − 𝛼

2ℎ(𝜏)) 𝑑𝜏
𝑇

0
− 𝑦𝑇 = 0. () 

To find 𝛼, we apply the Newton–Raphson iteration method 
[8, P.172], indicating the iteration numbers with a superscript: 

𝛼(𝑗), 𝑗 = 0,1,2, … .  

Denote the left-hand side of (4) by 𝐹(𝛼). The computation 
will look as follows: 

 𝐹(𝛼(𝑗+1)) = 𝐹(𝛼(𝑗)) +
𝜕𝐹(𝛼(𝑗))

𝜕𝛼
∆𝛼𝑗 = 0 () 

where 𝛼(𝑗+1) = 𝛼(𝑗) + ∆𝛼𝑗.  

We take, for instance, 𝛼(0) = 1 as the initial iteration. Thus, 

 𝐹(𝛼(𝑗)) =
𝑦0(𝑒

𝛼(𝑗)𝑇−𝑒−𝛼
(𝑗)𝑇)

2𝛼(𝑗)
+  

 ∫
𝑒𝛼

(𝑗)(𝑇−𝜏)−𝑒−𝛼
(𝑗)(𝑇−𝜏)

2𝛼(𝑗)
(𝑎𝑦(𝜏) − (𝛼

(𝑗))
2
ℎ(𝜏)) 𝑑𝜏

𝑇

0
− 𝑦𝑇   

𝜕𝐹(𝛼(𝑗))

𝜕𝛼
= 

𝑦0

2(𝛼(𝑗))2
(𝑒𝛼

(𝑗)𝑇(𝑇𝛼(𝑗) − 1) + 𝑒−𝛼
(𝑗)𝑇(𝑇𝛼(𝑗) + 1)) + 

   

  ∫ [
𝑒𝛼

(𝑗)(𝑇−𝜏)((𝑇−𝜏)𝛼(𝑗)−1)+𝑒−𝛼
(𝑗)(𝑇−𝜏)((𝑇−𝜏)𝛼(𝑗)+1)

2(𝛼(𝑗))
2 ×

𝑇

0
  

 (𝑎𝑦(𝜏) − (𝛼
(𝑗))

2
ℎ(𝜏))− (𝑒𝛼

(𝑗)(𝑇−𝜏) − 𝑒−𝛼
(𝑗)(𝑇−𝜏)) ℎ(𝜏)] 𝑑𝜏  

Thus, according to (5), the function 𝑦(𝑘2, 𝑡) is recovered. 

Now, from (1)-(2), we can write the explicit form of the 
function 𝑥: 

 𝑥(𝑘1, 𝑡) =
𝑥0(𝑒

𝑘1𝑡−1)

𝑘1
+ ∫

𝑒𝑘1(𝑡−𝜏)−1

𝑘1
(𝑎𝑥(𝜏) − 𝑘1𝑣𝑥(𝜏))𝑑𝜏

𝑡

0
  

where 𝑣𝑥(𝑡) ≡ √𝑣
2(𝑡) − (𝑦′(𝑘2, 𝑡))

2cos𝜓(𝑡).  

From the condition of residual for the function 𝑥(𝑘1, 𝑇), we have 

 
𝑥0(𝑒

𝑘1𝑇−1)

𝑘1
+ ∫

𝑒𝑘1(𝑇−𝜏)−1

𝑘1
(𝑎𝑥(𝜏) − 𝑘1𝑣𝑥(𝜏))𝑑𝜏

𝑇

0
− 𝑥𝑇 = 0  

To find 𝑘1 , we also apply the Newton–Raphson iteration 
method, indicating the iteration numbers with a superscript: 

𝑘1
(𝑗)
, 𝑗 = 0,1,2, ….  

Denote the left-hand side of (5) by 𝐹(𝑘1). The computation 
will look as follows: 

 𝐹(𝑘1
(𝑗+1)

) = 𝐹(𝑘1
(𝑗)
) +

𝜕𝐹(𝑘1
(𝑗)
)

𝜕𝑘1
∆𝑘1𝑗 = 0 () 

where 𝑘1
(𝑗+1)

= 𝑘1
(𝑗)
+ ∆𝑘1𝑗 . We take 𝑘1

(0)
= 1  as the initial 

iteration. Thus, 

 𝐹(𝑘1
(𝑗)
) =

𝑥0(𝑒
𝑘1
(𝑗)

𝑇−1)

𝑘1
(𝑗) +  

 ∫
𝑒𝑘1
(𝑗)
(𝑇−𝜏)−1

𝑘1
(𝑗) (𝑎𝑥(𝜏) − 𝑘1

(𝑗)
𝑣𝑥(𝜏)) 𝑑𝜏

𝑇

0
− 𝑥𝑇   

 
𝜕𝐹(𝑘1

(𝑗)
)

𝜕𝑘1
= 𝑥0

𝑒𝑘1
(𝑗)
𝑇(𝑘1

(𝑗)
𝑇−1)+1

(𝑘1
(𝑗)
)
2 +  

 ∫

𝑒𝑘1
(𝑗)
(𝑇−𝜏)(𝑎𝑥(𝜏)(𝑘1

(𝑗)
(𝑇−𝜏)−1)−(𝑘1

(𝑗)
)
2
(𝑇−𝜏)𝑣𝑥(𝜏))+𝑎𝑥(𝜏)

(𝑘1
(𝑗)
)
2 𝑑𝜏

𝑇

0
  

Solving equation (6) numerically, we find the coefficient 𝑘1, 
therefore, the function 𝑥(𝑘1, 𝑡) is recovered. 

Finally, from (1)-(2), we can write the explicit form of the 
function 𝑧: 

 𝑧(𝑘3, 𝑡) =
𝑧0(𝑒

𝑘3𝑡−1)

𝑘3
+ ∫

𝑒𝑘3(𝑡−𝜏)−1

𝑘3
(𝑎𝑧(𝜏) − 𝑘3𝑣𝑧(𝜏))𝑑𝜏

𝑡

0
  

where 𝑣𝑧(𝑡) ≡ √𝑣2(𝑡) − (𝑦′(𝑘2, 𝑡))
2sin𝜓(𝑡).  

Also from the condition of residual for the function 𝑧(𝑘3, 𝑇), we 
have 

 
𝑧0(𝑒

𝑘3𝑇−1)

𝑘3
+ ∫

𝑒𝑘3(𝑇−𝜏)−1

𝑘3
(𝑎𝑧(𝜏) − 𝑘3𝑣𝑧(𝜏))𝑑𝜏

𝑇

0
− 𝑧𝑇 = 0  

As in the previous cases, to find 𝑘3, we again apply the 

Newton–Raphson iteration method, indicating the iteration 

numbers with a superscript: 𝑘3
(𝑗)
, 𝑗 = 0,1,2, ….  

Denote the left-hand side of (5) by 𝐹(𝑘3). The computation 

will look as follows: 

 𝐹(𝑘3
(𝑗+1)

) = 𝐹(𝑘3
(𝑗)
) +

𝜕𝐹(𝑘3
(𝑗)
)

𝜕𝑘3
∆𝑘3𝑗 = 0 () 

where 𝑘3
(𝑗+1)

= 𝑘3
(𝑗)
+ ∆𝑘3𝑗 .  

We take 𝑘3
(0)
= 1 as the initial iteration. Then 

 𝐹(𝑘3
(𝑗)
) =

𝑧0(𝑒
𝑘3
(𝑗)

𝑇−1)

𝑘3
(𝑗) +  

 ∫
𝑒𝑘3
(𝑗)
(𝑇−𝜏)−1

𝑘3
(𝑗) (𝑎𝑧(𝜏) − 𝑘3

(𝑗)
𝑣𝑧(𝜏)) 𝑑𝜏

𝑇

0
− 𝑧𝑇  
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𝜕𝐹(𝑘3
(𝑗)
)

𝜕𝑘3
= 𝑧0

𝑒𝑘3
(𝑗)
𝑇(𝑘3

(𝑗)
𝑇 − 1) + 1

(𝑘3
(𝑗)
)
2 + 

 ∫

𝑒𝑘3
(𝑗)
(𝑇−𝜏)(𝑎𝑧(𝜏)(𝑘3

(𝑗)
(𝑇−𝜏)−1)−(𝑘3

(𝑗)
)
2
(𝑇−𝜏)𝑣𝑧(𝜏))+𝑎𝑧(𝜏)

(𝑘3
(𝑗)
)
2 𝑑𝜏

𝑇

0
  

Solving equation (7) numerically, we find the coefficient 𝑘3, 
therefore, the function 𝑧(𝑘3, 𝑡) is recovered. 

V. CONCLUSION 

We put forward the idea of fusing flight data, representing 
the flight path equations in the form of their linear combination. 
An iteration algorithm is proposed for calculating the 
coefficients of these equations, which ideally coincide with an 
arbitrarily selected initial approximation. 

This study is theoretical in nature. As we know, flight data is 
measured at discrete instants of time and recorded in the black 
box. Therefore, for the practical implementation of the method, 
its discrete analogue should be developed and applied to process 
large amounts of flight data of each aircraft.  

It is assumed that the combined coefficients may be different 
for each specific aircraft, and the mean values of the coefficients 

calculated for different flights of that aircraft can be used for data 
fusion. 

REFERENCES 

[1] Alguliyev R.M., Orujov G.G., Azizov R.A., Azizov Y.A. Development 
of a system for operational processing of flight information // Elmi 
Məcmuələr (National Aviation Academy journal), – 2005, Vol.7, No 2, – 
p. 58-70. (in Russian)  

[2] Balayev, N.N. Determining the correlation between the flight parameters 
of the aircraft to recover flight information // Informasiya Texnologiyaları 
Problemləri. – 2010. – No 2. – p. 103-108. (in Azerbaijani) 

[3] Alguliyev R.M., Orujov G.G., Sabziev E.N. On one method of recovering 
lost flight information // Proceedings of the III international conference 
"System Identification and Control Problems", Moscow, January 28-30, 
2004, – p. 348-352. (in Russian) 

[4] Azizov P. A. Development of methods and algorithms for the operational 
processing of flight data: Dissertation for the degree of Candidate of 
Technical Sciences. Institute of Information Technologies of ANAS, 
Baku, 2004. – 160 p. (in Russian) 

[5] Alguliyev R.M., Orujov G.G., Sabziev E.N. Fusion of measurements to 
identify the flight path of an aircraft // Mekhatronika, Avtomatizatsiya, 
Upravleniye, No. 2, 2012, - p. 57-60, (Moscow). (in Russian) 

[6] Bondarchuk I.E., Kharin V.I. Aviation and avionics equipment of the AN-
24 aircraft. – M .: Transport, 1975. – 280 p. (in Russian) 

[7] Solovyev V.I., Shabalov P.G. Inertial navigation systems: A study guide 
/ Samara: Publishing house of the Samara State Aerospace University, 
2011. – 72 p. (in Russian) 

[8] McCracken D., Dorn W. Numerical Methods and Fortran Programming. 
– John Wiley, New York, 1967. – 457 p. 

 


