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Abstract—The explosive process influence on the environment 

with the existing impenetrable fixed inclusion is investigated by 

quasiconformal mappings numerical methods and step-by-step 

parameterization of the environment and the process 

characteristics numerical methods. The boundaries of the crater 

formed by the explosion, pressed and undisturbed areas of soil are 

determined. Numerical experiments were performed on the basis 

of the developed algorithm 
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I.  INTRODUCTION  

At the present stage of its technological development, the 
national economy of Ukraine and many other states is 
increasingly introducing the use of explosive energy. Explosive 
processes are used for crushing rocks, in mining, in construction, 
in particular, underground and semi-underground structures, to 
provide materials (eg soil) with the necessary engineering 
properties, to form large cavities. There are several 
mathematical models of the explosive process, each of which is 
used to solve a certain class of problems [1 - 5]. 

 A liquid model is widely used to study explosive processes 
in the soil [3, 4]. Within the framework of this model, a number 
of works have been written, which determine the boundaries of 
the crater, pressed and undisturbed soil zones caused by the 
explosion of one [8, 9] or two [10, 11] charges in isotropic and 
anisotropic [8] media, set the required explosive force to form 
the maximum size of the crater, provided that the integrity of 
these surrounding objects is preserved [11]. The liquid model of 
the explosion process is also generalized to the spatial case [12]. 
The above works consider cases when there are no inviolable 
obstacles in the path of the blast wave, and the environment in 
which the explosion occurred is close to homogeneous. 
However, there are a number of cases where there is an 
immovable object in the path of the blast wave. The purpose of 
this work is to determine the position of the boundaries of the 
crater, pressed and undisturbed areas of soil provided the 
presence in the affected area of a stationary object of known 

shape and size, and compare the resulting distribution of formed 
areas with the distribution formed in the soil by a similar 
explosion inclusions. 

II. PROBLEM STATEMENT 

In the environment where the explosion is going to take 
place, we distinguish for consideration some two-connected 

region zG ( )z x iy= + (Figure 1) bounded by the charge circuit 

*L =   *: ( , ) 0z f x y = { :x iy= + * ( )x x t= , * ( )y y t= , 

* *}t    and some external circuit 
*L =

 *: ( , , ) 0z f x y  = { :x iy= +
*( , )x x t = , *( , )y y t = , 

* *}t   . Also the area occupied by inclusion is specified: 

*
z zG G . It’s bounded by the circuit 0L =  0: ( , ) 0z f x y =

{ :x iy= + 0 ( )x x t= , 0 ( )y y t= , 0 0}t   . Here * ( )x t ,  

* ( )y t , 0 ( )x t , 0 ( )y t , *( , )x t   and 
*( , )y t   are predefined 

continuous-differential functions;  is the parameter 

characterizing the position of the outer circuit of the considered 
area, which will be specified in the process of solving the 
problem under the condition of stabilization, as described in [9]. 
We assume that the barrier is absolutely rigid and impermeable 
to soil particles. So we obtain some three-connected domain 

0 */z z zG G G= . 

The process of motion of particles of the medium caused by 
the explosion action is modeled using the law of motion 

k grad =  and the continuity equation 0div =  (similarly 

to [8, 9]). Here ( )( , ), ( , )x yx y x y  =  is the particle velocity at 

a point ( , )x y , ( ), /x y P  = = −  is the potential of the field 

formed by the explosion, where  is the density of the medium, 

P  is the pressure pulse that exerts a charge on the particles of 

the medium during the explosion, ( )k k grad= is the so-
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called fictitious permeability coefficient, which characterizes 
the ability of particles to break away [8]. 

The inverse effect of the explosion process characteristics 
(quasipotential gradient) on the environment characteristics (as, 
for example, in [8]) is characterized by the formula 

( ) ( )( )* 0 0
0

1

2
k k I I I I I I= + − − + −  , (1) 

where 
0

0k k=  the initial distribution of the fictitious 

permeability coefficient of the medium, 

2 2
x yI grad  = + =  is the magnitude of the quasi-potential 

gradient, 
0I  and 

*I  are the critical values used to establish the 

boundaries of the formed sections of the crater, pressed and 
undisturbed soil zones, the parameter   depends on soil type 

and is determined experimentally. 

By introducing a function ( ),x y =  that is complex 

conjugate to ( , )x y =  and forming a conditional section   

of a region 
0
zG  passing through a certain fixed point *A L

along the corresponding desired flow line, we arrive at the 
problem of quasiconformal mapping 

( ) ( ) ( ), i ,z x y x y   = = +  of the investigated physical 

domain 
0 \z zG G=   to its corresponding quasicomplex 

potential domain  :G i   = = + *     0 Q 

 *\ : ,     =    [6, 7]. Since the domain 
*
zG  is 

impermeable, one of the flow lines (denote it  
*( , )x y = ) will 

"circumflex" it, bifurcating at some critical point K  ( 0K L ) 

(denoting the potential value in it ( )K = ), and reconnecting 

at another critical point M   ( 0M L ). The value of the 

potential at this point is similarly denoted by ( )M =  
*

*( )       (Figure 1). 

The problem is to solve a system of equations of the Cauchy-
Riemann type: 

( )

( )

| ) | ,

| ) | ,

grad
x y

grad
y x

 
 

 

 
 

 

=

= −

 ( ), zx y G ,   (2) 

under boundary conditions *
*

*
* , , 0,

L L AD
    = = =  

*

y xBC
L

Q dx dy  = = − + ,  *HKME HKME
  = = .  The 

values  ,   , * , Q  and   will be identified iteratively in 

the process of problem solving. 

Given the geometric complexity of the physical domain zG

, we turn to the solution of the inverse problem on the 
quasiconformal mapping of the domain of quasicomplex 

potential G  to the domain zG  (as described, for example, in 

[11]), which is reduced to solving a system of equations: 

2 2

2 2

1

1
( ) ( )

1
( ) ( ) 0.

x

y x

J

y x x

J

 

  


 

   


   

 
 
 

+  
 +   

  

  
+ + =    

  

 

 

Figure 1. Schematic representation of the investigated area 

 

 

Figure 2. Schematic representation of the corresponding 
quasicomplex potential domain 
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2 2

1

1
( ) ( )

y

y x

J

 

  


 

 
 
 

+  
 +   

  

 

2 21
( ) ( ) 0,

y x y

J

   


   

  
+ + =    

  

 

x y x y
J

   

   
= − , ( ), G    (3) 

under the boundary conditions 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

0

0

0 0
00 0

0 0

0 0
00 0

0 0

y , x ,
* *

x ' ( t ) y ' ( t ) ,* t * t

t ,* *

* *y , x ,* *x ' ( t ) y ' ( t ) ,t t

* *t ,.

* *y , x ,
x '( t ) y '( t ) ,

t ,

* *y , x ,
x '( t ) y '( t ) ,

t ,

   

 

 

   

 

 

   

 

 

   

 

 

  


+ =
  


 

  

+ =
 


  



 +  +
 + =
  


 


 −  −
+ =  


  

(4) 

( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )
* * * * * *

* * * * * *

, , , ,

, , , ,

x x t y y t

x x t y y t

     

     

= =

= =
 (5) 

0 Q  , 

( ) ( )( ) ( ) ( )( )* 0 0 * 0 0, , , ,x x t y y t     = =     .(6) 

( ,0) ( , ),

( ,0) ( , ),

x x Q

y y Q

 

 

=

=
 *

*    .  (7) 

Here ( )* ,t t =  ( )*t t =  and ( )0t t =  are the functions that 

determine the dependence of the parameters t  of the boundary 

setting on the values of the functions of potential and flow on 

the curves *,L  *L  and 0 ,L  accordingly. 

III. DIFFERENCE ANALOGUE AND ALGORITHM OF 

NUMERICAL SOLVING OF THE PROBLEM 

The rectangular quasicomplex potential domain G  is 

divided into 6 rectangular subdomains: 
1G =  

*
*{( , ) : , 0 }          , 2G  {( , ) : =

* ,     * }Q   , 3G  {( , ) : ,    =    

*0 }   ,  4G  *{( , ) : , }Q      =     ,  5G

* *{( , ) : , 0 }      =      and 6G = {( , ) : 
* *, }Q         ( 1G AHKF = , 2G HBSK = , 

3G FKMT = , 4G KSPM = , 5G TMED = and 
6G MPCE = ). Then we give a uniform partition 1 1n m , 

1 2n m , 2 1n m , 2 2n m , 3 1n m , 3 2n m  of subdomains 

1G , 2G , 3G , 4G , 5G  and 
6G , respectively. In this case, the 

domain 
*

*{( , ) : , 0 }G Q      =      (

G ABCD = )  will be divided into n m  nodes (

1 2 3n n n n= + + , 1 2m m m= + ), which are defined as follows: 

*

* 1 1 1
1

1 2 2 1 2
2

*

1 2 3 3
3

1 2 3

, , 1, ,

( ) , , 1, ,

( ) , ,

1,

i

i i n
n

i n i n n
n

i n n
n

i n n n

 
  

 
  



 
  

−
+   = =


 −
 + −   = = +

= 


− + − −   =



= + +

 (8) 

 

*

1 1 1
1

*

1 2 2 1 2
2

, , 1, ,

( ) , , 1, ,

j

j j m
m

Q
j m j m m

m


 




 


  = =


= 

−
−   = = +



 (9) 

The steps of the grid domains 1 , 2 , 3 , 1 , 

2  and the number of partition nodes 1n , 2n , 3n , 1m , 2m  
will be specified iteratively in the process of solving the problem 

together with the total flow Q  and critical values  ,  , *  

as follows: 1 1 2 2Q m m =  +  , 
*

*

1

a

a

 


+
=

+
, 

*
*

1

a

a

 


+
=

+
, where 

11 1

21 2 31 3

( 1)

( 1) ( 1)

n
a

n n



 

+
= +

− + +

12 1

22 2 32 3

( 1)

( 1) ( 1)

n

n n



 

+
+

− + +
,  31 3

12 2 11 1

( 1)

( 1) ( 1)

n
a

n n



 

+
= +

− + +

32 3

22 2 21 3

( 1)

( 1) ( 1)

n

n n



 

+
+

− + +
 (as, for example, in [11]) . 

The difference analogue of problem (3) - (7) will be 
approximated by homogeneous conservative difference 
schemes: 
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1, , , 1, 2
, , 1/2 , 1 ,

1/2, 1/2,

, 1/2 , , 1

1, , , 1, 2
, , 1/2 , 1 ,

1/2, 1/2,

( ( )

( )) 0.

( ( )

i j i j i j i j

p s i j i j i j
i j i j

i j i j i j

i j i j i j i j

p s i j i j i j
i j i j

x x x x
k x x

k k

k x x

y y y y
k y y

k k





+ −

+ +
+ −

− −

+ −

+ +
+ −

− −
− + − +

+ − =

− −
− + − +

 (10) 

, 1/2 , , 1( )) 0.i j i j i jk y y− −+ − =  

Here , ( , )i j i jx x  = , , ( , )i j i jy y  = , 

1, ,

1/2,
2

i j i j

i j

k k
k

+

+

+
= , , 1,

1/2,
2

i j i j

i j

k k
k

−

−

+
= , 

, 1 ,

, 1/2
2

i j i j

i j

k k
k

+

+

+
= , , , 1

, 1/2
2

i j i j

i j

k k
k

−

−

+
= , ,

p

p s
s







=


, 

1,3p = , 1,2s = . 

1 1

1 1

1 0

1

01
0 0

1

1

3

1
0 0

3

1
0 0

1

1
0 1 20 0 1 1

1

0

y y, j , j
x ' ( t ( ))* t * j

x x , j, j
y ( t ( )) , j ,m,*t * j

y yn, j n , j* *x ' ( t ( ))t j

x xn, j n , j*y ( t ( )) , j ,m,*t j

y yi,m i,m
x ' ( t ( ))t i

x xi,m i,m
y ' ( t ( )) ,i n ,n n ,t i

x ' ( tt



















−
+



−
+ = =



− −
+



− −
+ = =



− −
+



− −
+ = = + +



1 1

1 1

1
0

2

1
0 1 20 0 1 1

2

y yi,m i,m
( ))i

x xi,m i,m
y ' ( t ( )) ,i n ,n nt i



























 −+ +
 


− +
+ = = + +



(11) 

( )( ) ( )( )

( )( ) ( )( )

0, * * 0, * *

* * * *
, ,

, ,

, ,

j j j j

n j j n j j

x x t y y t

x x t y y t

 

 

= =

= =
 0,j m= , (12) 

 ( )( ) ( )( )
1 1, 0 0 , 0 0, ,i m i i m ix x t y y t = =  1 2,i n n= .  (13) 

  
,0 ,

,0 ,

,

,

i i m

i i m

x x

y y

=

=
 0,i n= .  (14) 

We will solve the problem according to the algorithm of 
alternate parameterization of the characteristics of the 
environment and process developed by the authors earlier [10]. 

Note that the described option of transition from a three-
connected region to a single-connected one is only one of the 

possible variants. Its choice is determined by the form and 
position of inclusion. 

CONCLUSION 

As a result of solving the problem, the boundaries of the 
section of the crater, pressed and undisturbed areas of soil, as 
well as the characteristic flow line were obtained. 

Based on the developed algorithm, a number of numerical 
experiments were performed, which show that the presence of 
fixed impermeable inclusions in the soil affects the distribution 
of the explosion zones formed by the explosion: crater pressed 
and undisturbed areas of the soil. The form of inclusion also 
matters. 

In the future - the study of the impact of the explosion on the 
environment in the presence of two or more inclusions, the 
stability of inclusions under the action of the explosion, the 
impact on the distribution of the formed zones of anisotropy of 
the environment, the corresponding spatial problems. 
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