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Abstract—We propose a novel two-step proximal method for 

solving equilibrium problems in Hadamard spaces. The 

equilibrium problem is very general in the sense that it includes as 

special cases many applied mathematical models such as: 

variational inequalities, optimization problems, saddle point 

problems, and Nash equilibrium point problems. The proposed 

algorithm is the analog of the two-step algorithm for solving the 

equilibrium problem in Hilbert spaces explored earlier. We prove 

the weak convergence of the sequence generated by the algorithm 

for pseudo-monotone bi functions. Our results extend some 

known results in the literature for pseudo-monotone equilibrium 

problems. 
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I.  INTRODUCTION 

An equilibrium theory in finite-dimensional Euclidean 

spaces was first introduced by Ky Fan. Algorithms for 

approximate solving equilibrium and related problems are the 

subject of many papers [1-9]. Variational inequalities are a case 

of equilibrium problems [10]. G.M. Korpelevich proposed an 

extragradient method [11] for solving them. The analogs of the 

extragradient method for equilibrium problems and related 

questions are the subject of [7, 12]. 
In 1980 L.D. Popov [13] proposed an efficient interesting 

modification of the Arrow-Hurwitz method of search for saddle 
points of convex-concave functions in finite-dimensional 
Euclidean space. A two-step iterative proximal algorithm for 
solving equilibrium problems in Hilbert space, which is an 
adaptation of L.D. Popov's method for general equilibrium 
programming problems, was proposed in [8] (see also [9, 14]). 

Interest in building the theory and algorithms for solving 

mathematical programming problems in metric Hadamard 

spaces [15-17] (also known as CAT(0) spaces) has arisen 

recently due to problems in mathematical biology and machine 

learning. Another strong motivation for studying these 

problems is the ability to formulate some non-convex problems 

in the form of convex (more precisely, geodesically convex) 

problems in a space with a specially selected adequate 

Riemannian metric [18]. Some authors began to study 

equilibrium problems in Hadamard spaces [18-20]. In [18], 

existence theorems for problems of equilibrium on Hadamard 

manifolds were obtained, applications to variational 

inequalities were considered, and the resolvent method for 

approximating solutions to equilibrium problems was 

substantiated. In [19], for more general equilibrium problems 

with pseudo-monotone bifunctions in Hadamard spaces, 

existence theorems were obtained, and a proximal algorithm 

was proposed, and its convergence was proved. A more 

constructive approach is devoted to the work [20], the authors 

of which, starting from [7], proposed and justified an analog of 

the extragradient method (more precisely, extra-proximal 

method) for pseudo-monotone equilibrium problems in 

Hadamard spaces. 
In this paper, which continues the article [9], we propose a 

novel iterative two-step proximal algorithm for approximate 
solution of equilibrium problems in Hadamard spaces. The 
algorithm is an analog of the two-step algorithms previously 
studied in [14] for variational inequalities and equilibrium 
problems in a Hilbert space or a finite-dimensional normed 
linear space with Bregman divergence. For pseudo-monotone 
bifunctions, a theorem on the weak convergence (Δ-
convergence) generated by the sequence algorithm is proved. 

II. PRELIMINARIES AND AUXILIARIES 

In this section, we recall some well-known basic and useful 

results [15-17] that will be needed in establishing our main 

results.  
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Let ( ),X d  be a metric space. For  , X , a mapping 

 : 0,m l X→ , where 0l  , is called a geodesic with endpoints 

 ,  , if ( )0m = , ( )0m = , and  ( ) ( )( ),d m t m t = −  

for all  , 0,t l  . If, for all  , X , a geodesic with 

endpoints  ,   exists, then we call ( ),X d  a geodesic metric 

space. Furthermore, if there exists a unique geodesic for each 

 , X , then ( ),X d  is said to be uniquely geodesic [15]. 

A subset K  of a uniquely geodesic space ( ),X d  is said to 

be convex when for any two points  , K , the geodesic 

joining   and   is contained in K . For each  , K , the 

image of a geodesic m  with endpoints  ,   is called a 

geodesic segment joining   and   (denoted by  ,  ). 

Let ( ),X d  be a uniquely geodesic metric space. For each 

points  , X  and for each  0,1t , there exists a unique 

point  ,    such that ( ) ( ) ( ), 1 ,d t d   = −  and 

( ) ( ), ,d td   = . We will use the notation ( )1t t  −  for 

denoting the unique point   satisfying the above statement. 

Definition 1 ([15]). A geodesic space ( ),X d  is called CAT(0) 

space if for all  ,  , X   and  0,1t  it holds that 

( )( )2 1 ,d t t   −   

( ) ( ) ( ) ( ) ( )2 2 2, 1 , 1 ,td t d t t d      + − − − . 

A complete CAT(0) space is called a Hadamard space. 

Let ( ),X d  be a Hadamard space and ( )nx  be a bounded 

sequence in X . Take x X . Let ( )( ) ( ), lim ,n n
n

r x x d x x
→

= . 

The asymptotic radius of ( )nx  is given by 

( )( ) ( )( )inf ,n x X nr x r x x=  

and the asymptotic center of ( )nx  is the set 

( )( ) ( )( ) ( )( ) : ,n n na x x X r x x r x=  = .  

It is known that in a Hadamard space, ( )( )na x  consists exactly 

one point. 

Definition 2 ([15]). A sequence ( )nx  in a Hadamard space 

( ),X d  Δ-converges (weakly converges) to x X  if 

( )( )  
kna x x= , for each subsequence ( )

knx  of ( )nx . 

Every bounded sequence in general Hadamard space has a 
(weak) Δ-convergent subsequence [15]. Also, every closed 
convex subset of a Hadamard space is Δ-closed in the sense that 

it contains all Δ-lim points of every Δ-convergent subsequence 
[15, 16]. 

We present next well-known result related to the notion of 
Δ-convergence. 

Lemma 1 ([15]). Suppose the sequence ( )n  of elements from 

a Hadamard space X  converges weakly to x X . Then for all 

 \y X x  we have ( ) ( )lim , lim ,n n
n n

d x d y 
→ →

 . 

Let ( ),X d  be a Hadamard space. A function :g X R→  is 

said to be convex if  ( )( ) ( ) ( ) ( )1 1g t t tg t g    −  + −  for 

all  , X ,  0,1t . 

III. EQUILIBRIUM PROBLEM IN HADAMARD SPACES 

Let ( ),X d  be a Hadamard space. Take a closed and convex 

set С X  and :F C C R → .  

The equilibrium problem ( ),EP F C  consists of finding 

x C  such that 

( ), 0F x y   y С  .                           (1) 

The set of solutions of ( ),EP F C  will be denoted as S . 

We assume that the bifunction F  satisfies the following 
conditions: 

A1) ( ), 0F x x =  for all x С ; 

A2) ( ), :F x C R →  is convex and lower semicontinuous for all 

x С ; 

A3) ( ), :F y C R →  is Δ-upper semicontinuous for all y C ; 

A4) :F C C R →  is pseudo-monotone, i.e.  

for any pair x , y C  ( ), 0F x y   implies ( ), 0F y x  ; 

A5) :F C C R →  is Lipschitz-type continuous, i.e. there exist 

two positive constants a  and b  such that 

( ) ( ) ( ), , ,F x y F x z F z y + +  

                                  ( ) ( )2 2, ,ad x z bd z y+ +  , ,x y z C  . 

Further, we assume that the solution set S  is nonempty. 

A. Two-Step Proximal Algorithm 

Propose the following Two-Step Proximal Algorithm for 

solving ( ),EP F C . 

Algorithm 1. For 1x , 1y C  generate the sequences nx , 

ny C  with the iterative scheme 

( ) ( )( )

( ) ( )( )

21
1 2

21
1 12

arg min , , ,

arg min , , ,

n y C n n

n y C n n

x F y y d y x

y F y y d y x





+ 

+  +

 = +


= +
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where 0  . 

B. The Convergence of the Algorithm 

We start the analysis of the weak convergence with the proof 

of an important inequality for sequences ( )nx  and ( )ny , 

generated by the Two-Step Proximal Algorithm. 

Lemma 2. For sequences ( )nx  and ( )ny , generated by 

Algorithm 1 and an element z S  the next inequality is 

satisfied 

( ) ( ) ( ) ( )2 2 2

1 1, , 1 2 ,n n n nd x z d x z b d x y+ + − − −  

( ) ( ) ( )2 2

11 4 , 4 ,n n n na d y x ad x y  −− − + . (2) 

Proof. Let z S . We have 

( ) ( )21
1 12

, ,n n n nF y x d x x
+ ++   

( ) ( )21

2
, ,n nF y y d y x


 +  y С  .       

Now, letting ( )1 1ny tx t z+=  − , ( )0,1t , we have 

( ) ( )21
1 12

, ,n n n nF y x d x x
+ ++   

( )( )1, 1n nF y tx t z+  − +  

( )( )21
12

1 ,n nd tx t z x
 ++  −   

( ) ( ) ( )1, 1 ,n n ntF y x t F y z+ + − +  

( ) ( ) ( )( 2 21
12
, 1 ,n n ntd x x t d z x

 ++ + − − ( ) ( ))2

11 ,nt t d x z+− . 

Pseudo-monotonicity of F  implies that ( ), 0nF y z  . Hence, 

( ) ( )11 ,n nt F y x +−   

( ) ( ) ( ) ( )( 2 21
12

1 , 1 ,n n nt d x x t d z x
 + − − + − −  

( ) ( ))2

11 ,nt t d x z+− − . 

By letting 1t →  we get  

( )1,n nF y x + ( ) ( ) ( )( )2 2 21
1 12

, , ,n n n nd z x d x x d x z
 + + − − . 

From the definition of elements ny  it follows that 

( ) ( )21
1 2
, ,n n n nF y y d y x

− +   

( ) ( )21
1 2
, ,n nF y y d y x

− +     y С  .  

Now, letting ( )1 1n ny tx t y+=  − , ( )0,1t , we have 

( ) ( )21
1 2
, ,n n n nF y y d y x

− +   

( )( )1 1, 1n n nF y tx t y− +  − +  

( )( )21
12

1 ,n n nd tx t y x
 ++  −   

( ) ( ) ( )1 1 1, 1 ,n n n ntF y x t F y y− + − + − +  

( ) ( ) ( )( 2 21
12
, 1 ,n n n ntd x x t d y x

 ++ + − − ( ) ( ))2

11 ,n nt t d x y+− . 

Hence, 

   ( ) ( )1 1 1, ,n n n ntF y y tF y x− − +−   

( ) ( )( 2 21
12
, ,n n n ntd x x td y x

 + − ( ) ( ))2

11 ,n nt t d x y+− − . 

By letting 0t →  we get 

( ) ( )1 1 1, ,n n n nF y y F y x− − +−   

( ) ( ) ( )( )2 2 21
1 12
, , ,n n n n n nd x x d y x d x y

 + + − − .  

We obtain 

( ) ( ) ( )1 1 1 1, , ,n n n n n nF y x F y y F y x+ − − ++ −   

( ) ( )( 2 21
12

, ,n nd z x d x z
 + − ( ) ( ))2 2

1, ,n n n nd y x d x y+− − .   (3)    

Lipschitz-type continuity of bifunction F  guaranties the 
satisfying of next inequality  

( ) ( ) ( )1 1 1 1, , ,n n n n n nF y x F y y F y x+ − − ++ −   

( ) ( )2 2

1 1, ,n n n nbd y x ad y y+ − − − .    (4)     

In the sequel by (3) and (4), we have  

( ) ( ) ( )2 2 2

1, , ,n n n nd x z d z x d y x+  − −  

( ) ( )2 2

1 1, 2 ,n n n nd x y ad y y+ −− + ( )2

12 ,n nbd y x ++ . 

The term ( )2

1,n nd y y−
we estimate in the next way 

( ) ( ) ( )2 2 2

1 1, 2 , 2 ,n n n n n nd y y d y x d x y− − + . 

Taking this into account, we get the following inequality 

   ( ) ( )2 2

1, ,n nd x z d z x+  − ( ) ( )2 2

1, ,n n n nd y x d x y+− +  

( ) ( )2 2

14 , 4 ,n n n nad y x ad x y −+ + +  

( )2

12 ,n nbd y x ++ , 

i.e. the inequality (2). 

Then, the main theorem holds. 

Theorem 1. Assume that the bifunction F  satisfies A1)–A5) 
and the set of solutions S  is nonempty. Assume that 

( )( )1

2 2
0,

a b


+
 . 

Then the sequence ( )nx  generated by Algorithm 1 Δ-converges 

to a point of S . 

C. Examples 

We first recall the well-known formulation of saddle point 
problems in the framework of Hadamard manifolds. Then we 
derive on algorithm of proximal type to find the saddle point. 

Let 1M  and 2M  be a Hadamard manifolds, and 1K  and 2K  

the geodesic convex subset of 1M  and 2M , respectively. A 

function 1 2:H K K R →  is called a saddle function if ( ),H x   

is geodesic convex on 2K  for all 1x K  and ( ),H y  is 

geodesic concave, i.e. ( ),H y−   is geodesic convex on 1K  for 

all 2y K . 

A point ( ) 1 2,z x y K K=    is said to be a saddle point of 

H  if 

( ) ( ) ( ), , ,H x y H x y H x y   ( ) 1 2,x y K K   . 

The saddle point problem can be rewritten in the form of an 
equilibrium problem. In this case Algorithm 1 takes the next 
form. 
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Algorithm 2. For ( )1 1,x y , ( )1 1 1 2,x y K K   generate the 

sequences of pairs ( ),n nx y , ( ),n nx y  with the iterative scheme 

( ) ( )( )

( ) ( )( )

( ) ( )( )

( ) ( )( )

1

2

1

2

21
1 12

21
1 22

21
1 1 12

21
1 2 12

arg min , , ,

arg min , , ,

arg min , , ,

arg min , , ,

n x K n n

n y K n n

n x K n n

n y K n n

x H x y d x x

y H x y d y y

x H x y d x x

y H x y d y y









+ 

+ 

+  +

+  +

 = − +

 = +


= − +


= +

 

where 0  . 

Let I  be finite set of indices. For each i I  we are given a 

geodesic convex set iC  and function :iH C R→ , where 

ii I
C C


= . A point ( )i i I

x x C


=   called Nash equilibrium, 

if for all i I  next inequalities hold 

( ) ( ),i i i iH x H x y   i iy С  . 

Define the function : C C R  →  in such way: 

( ) ( ) ( )( ), ,i

i i ii I
x y H x y H x


 = − . 

Then a point x C  is Nash equilibrium iff, when x  is the 

solution of the equilibrium problem associated to the bifunction 
  and the set C .  

In this case Algorithm 1 takes the next form. 

Algorithm 3. For ( )1

i i I
x


, ( )1

i i I
y C


  we generate sequences 

for them 

( ) ( ) ( )

( )

( ) ( ) ( )

( )

1 ,

21

2

1 ,

2 11

2

arg min ,

                                         , ,

arg min ,

                                        ,

i i I

i i I

n i n

i i iy Ci I
i I

n

i i i

i I

n i n

i i iy Ci I
i I

n

i i i

i I

x H y y

d y x

y H y y

d y x









+






+




+




= +




+ 




= +




+







 ,
















 

where ( ),

,

i n j

n j I j i
y y

 
= , 0  . 

IV. CONCLUSIONS 

In this article, we proposed a novel iterative two-step 

algorithm for solving the equilibrium problems in Hadamard 

spaces (1). We provide the analysis and proved the weak 

convergence of the algorithm. 

Analysis of the weak convergence of the method carried 

out under the assumption of the existence of solutions and under 

the conditions of Lipschitz-type continuity and pseudo-

monotonicity for the bifunction. Finally, we give some 

examples where the main results can be applied.  

Our results extend some known results in the literature for 

monotone and pseudo-monotone equilibrium problems [8, 9] 

and also the related results for variational inequalities 

associated with pseudo-monotone operators [14]. 

The interesting question is the substantiation of using the 

Algorithm 1 as the element of the scheme of searching solution 

of equilibrium problem with a priori information, described in 

the form of inclusion to the set of fixed points of quasi-

nonexpansive operator.  
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