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Abstract—A modified method of numerical modeling for 

heterogeneous fluid dynamics processes with take of phase 

transitions will be presented. The method is based on the 

homogenization on cells and approximation of conservation laws 

for masses, momentums, and energies in integral and differential 

forms. The combination of Harlow's particle-in-cell method, 

Belotserkovskii's large particles method and Bakhvalov's 

homogenization method is used for computing by the modified 

method simulation for processes with phase transitions. 
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I.  INTRODUCTION 

A modified numerical method of simulations for processes 
of heterogeneous hydrodynamics with take of phase transitions 
will be discussed. It is supposed that the fluids are 
compressible and inviscid (non-viscous). Heterogeneities of the 
fluids are considered as small drops or particles of one fluid 
within other fluid. Total number of the drops may be large 
enough and the drops may have phase transitions. Thus 
simulations of the main fluid with small transited drops 
dynamics are considered. These are dynamics of multiphase 
flows really. Therefore it is possible to use general multiphase 
flow models in the case. However, relevant equations are not 
complete as a rule. For example, there is a problem as to 
distribute energies between the phases in the model dynamics. 
Various physical experiments are necessary for solving of the 
problem in concrete cases. The situation is more difficult 
whenever phase transitions are admissible.  

The modified numerical simulation method is based on 
homogenization on cells and relevant approximation of 
conservation laws for masses, momentums, and energies in 
integral and differential forms. The approximation is natural 
and numerical simulations are realized as direct computer 
experiments. The method seems to be much more adequate to 
the physical and mathematical essence of the dynamics because 
conservation laws are correct on the discrete level. 

The relevance of this problem is due to the intensive 
development of the branches of physics, chemistry and 
mechanics related to the study of dynamic processes occurring 
under pulsed loading and the passage of strong shock waves in 
metals, polymers, composites and other solids. The study and 

optimization of such processes are necessary for the 
development of new technologies for the synthesis of new 
substances. The formation of new substances, their 
modifications and phases is associated with physicochemical 
processes initiated at high pressures and energies. The 
calculation of such wave processes is complicated, since these 
physicochemical processes strongly affect the behavior of the 
initiating waves. In addition, phase transitions under the action 
of waves loading can lead to multi-front waves. To analyze 
these processes, the development of mathematical models are 
necessary, taking into account the basic principles of the theory 
of phase transformations, and the construction of highly 
efficient numerical methods and computational algorithms.. 

II. THE PARTICLE METHODS 

The modified method is a combination of the Harlow's 
particle-in-cell method, Belotserkovskii's large particles 
method and Bakhvalov's homogenization method (see [1] and 
[2]), where Euler's and Lagrange's approaches are used 
simultaneously. Some backgrounds of the combination were 
presented in [3–6] and developed in [7] partially. Let us recall 
some background of the methods before to give more details on 
the method combination. Euler's and Lagrange's approaches are 
used simultaneously in the particle-in-cell method for 
homogeneous fluid (or gas). The method is based on an 
approximation of conservation laws for masses, momentums, 
and energies of the fluid in the following integral forms 
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where ( )V t
 
and ( )S t are volume and surface of some 

Lagrange's domain in the fluid, N  is an exterior normal to the 

domain, ( , )p p E=
 
and , ,W E are unknown density, 

velocity, and full energy. For example, the case of three 



Modeling, control and information technologies – 2020 

dimension space may be discussed and therefore by definition 

ones have ( , , )W u v w=
 
for the velocity vector function.  

It is known [1] that the conservation laws are equivalent to 

conservation laws for masses, momentums, and energies of 

the fluid in the following differential forms  
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where W W  is the tensor square of vector function 

( , , , )W W t x y z=  and , ,x y z  is a point of some domain  , 

which is filled by the heterogeneous fluid under consideration. 

The time approximation in the particle-in-cell method is 

natural. Simulations are conducted step by step with a small 

enough time interval t  that starting from an initial 

configuration. The space approximation in the method is more 

complicated and dynamics are taking into consideration. The 

fluid region   is divided into cells with the small size x  

and the fluid filling every such cell is considered as a 

collection of a few particles or drops. Every such particle have 

own mass, volume, energy, and coordinates that are specified 

at an initial moment. In addition the density, velocity, and full 

energy , , , ,n n n n nu v w E  are specified for every such cell with 

number , ,i j k
 
at the time moment t n t=  . 

Corresponding time step of the simulation is split up to 
three stages so the discrete conservation laws are faithful. For 
example, the total mass of particles under consideration is 
saved at every time step of such approximation. 

On the first stage of the time step, the auxiliary velocity 

, ,
n n n

u v w  and the energy 
n

E  of particles from the sell with 

number , ,i j k  are calculated by the following formulas 
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and similar formula is used for
, 1/2, , , 1/2,...,n n

i j k i j kp w+ −
.   

This is the Euler's stage for approximations of transport free 
momentums equations in (1) by the pressure forces for every 
sell. On the second stage, motions of the particles by the 
velocities are taking into account. This is the Lagrange's stage 
for an approximation of masses equation that is modeling of 
mass transports from a sell to surrounding sells. On the third 
stage, moving of the momentums and energy are calculated. 
This is the concluding stage for approximations of pressure 
free momentums and energies equations in (1) that are 
modeling of the momentums and energy transports by the 
dynamics from a sell to surrounding sells. 

The approximations are rationale from physical and 
mathematical point of view since conservation laws are correct 
on the discrete levels during the courses of corresponding 
numerical simulations. Therefore the particle-in-cells method is 
effective enough for numerical evaluations of homogeneous 
fluid (or gas) dynamics by boundary conditions and external 
forces. Concrete types of fluid are defined here by a form of 

state equation ( , ),p p J= where /2J E W 2= −  is a notation 

for interior energy of homogeneous fluid (or gas). 

An essential problem of the method is only that total 
number of particles may be very large. Indeed total number of 
cells must be large enough for best approximations and the 
number of particles at every cell must be large enough also. 
Moreover every such particle must have own mass, volume, 
energy, and coordinates. Thus there is massive data and the 
data is recalculated from step to step in the simulation. 

In order to avoid the problem it is possibly to use the large 
particles method. The time approximation in the method is 
similar to the approximation in the particle-in-cell method. The 
space approximation in the method is following. A fluid region 
is divided into cells with small size and the fluid filling every 
such cell is considered as a large particle or drop. Every such 
particle have own mass, volume and energy that are specified 
at an initial moment. In addition the density, velocity, and full 
energy are specified for every such cell at the moment. But the 
volume of particle is coincided with the volume of cell now, 
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where homogenization is used. Therefore the mass and energy 
of particle are defined by the density and full energy. Thus the 
data is not so massive in the method by the homogenization. 

Corresponding time step of the simulation is split up to 

three stages also and so approximate conservation laws are 

faithful. The stages are similar to the stages of the particles in 

cells method, for example, formulas (3) are used on the first 

stage. Modifications are need only for modeling of the mass 

and momentums transports by the dynamics. For example, the 

mass transports are calculated as moving of corresponding 

share of large particle mass from the cell to corresponding 

surrounding sell by the following formulas 
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        , 1/2,, 1/2,, 1/2, ,
n nn

i j ki j ki j kM v x z t −−− =     

        , , 1/2, , 1/2, , 1/2 ,
n nn

i j ki j ki j kM w x y t +++ =     

        , , 1/2, , 1/2, , 1/2 ,
n nn

i j ki j ki j kM w x y t −−− =   
 

where  / , , / , , , / , , , /, , ,...,
n n n n

i 1 2 j k i 1 2 j k i j 1 2 k i j k 1 2u u v w+ − + −  are calculated as 

in (3) and we use the equalities   

      

/ , ,, ,

/ , ,

/ , ,, ,

, ,

, ,

nn
i 1 2 j kn i j k

i 1 2 j k n
n

i 1 2 j ki 1 j k

if u 0

if u 0






+

+

++

 
= 



 

      

/ , ,, ,

/ , ,

/ , ,, ,

, ,

, ,

nn
i 1 2 j kn i 1 j k

i 1 2 j k n
n

i 1 2 j ki j k

if u 0

if u 0






−−

−

−

 
= 



  

      

, / ,, ,

, / ,

, / ,, ,

, ,

, ,

nn
i j 1 2 kn i j k

i j 1 2 k n
n

i j 1 2 ki j 1 k

if v 0

if v 0






+

+

++

 
= 



            (5) 

      

, / ,, ,

, / ,

, / ,, ,

, ,

, ,

nn
i j 1 2 kn i j 1 k

i j 1 2 k n
n

i j 1 2 ki j k

if v 0

if v 0






−−

−

−

 
= 



 

      

, , /, ,

, , /

, , /, ,

, ,

, ,

nn
i j k 1 2n i j k

i j k 1 2 n
n

i j k 1 2i j k 1

if w 0

if w 0






+

+

++

 
= 



 

       

, , /, ,

, , /

, , /, ,

, ,

, .

nn
i j k 1 2n i j k 1

i j k 1 2 n
n

i j k 1 2i j k

if w 0

if w 0






−−

−

−

 
= 



 

The formulas (4) and (5) are actually an approximation for 
the remaining equations from (2), which express the 
conservation laws of momentum and energy, under the 
assumption that the terms with divergence are equal to zero. 
Accordingly, the approximation of such terms with divergence 
determining the momentum transfer and energy is produced at 
the final stage in the transition from the time step to a new step. 

On the third stage, moving of the momentums 

, ,n 1 n 1 n 1u v w+ + +  and the energy n 1E + on the time step n 1+  are 

calculated by the following formulas 
1
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where Oxyz x y z=     is the volume of the cell under 

consideration and the values  , , // , , / , ,, ,...,
n n n

i j k 1 2i 1 2 j k i 1 2 j ku u E −+ −  are 

calculated as in formulas (5).  

Thus total mass of the fluid under consideration is saved at 

every time step of such approximation. Moreover, the mass 

sources may be induced by boundary conditions and external 

forces that leads to corresponding modifications of 

conservation laws in (1) and on the approximate level also. 

The momentums and energy transports are modeling in similar 

manners by the homogenization. Thus large particles method 

is effective enough for numerical computing. 
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The modified numerical method of simulations is designed 
to numerical modeling of the main fluid with small transited 
drops dynamics. The time approximation in the method is as in 
above methods. The space approximation in the method is 
following. Heterogeneous fluid region is divided into cells with 
small size. The main fluid filling every such cell is considered 
as a large particle while the transited drops are considered as 
the collection of a few "small" particles in the cell. Every large 
particle have own mass, volume and energy that are specified 
at an initial moment by the homogenization. Every small 
particle have own mass, volume, energy, and coordinates that 
are specified at the moment. In addition the density, velocity, 
and full energy are specified for every such cell. This is a 
combination of above methods at the initial moment. 
Corresponding time step of the simulation is split up to three 
stages as described above with additional averaging stage. 

On the averaging stage, energies of large particle and small 
particles in every cell are distributed between the particles so 
that a pressure in the cell is uniform. Indeed the large particle 
induce some pressure by own state equation and the small 
particles induce some pressure by own state equation and it is 
natural to distribute energies of the particles so that the first 
pressure coincides with second pressure. Moreover on the 
stage, it is possible to observe phase transitions of the small 
particles by the pressure, for example. The phase transitions are 
realized if the pressure is more than critical pressure by the 
corresponding phase diagram. In the case the small particles 
may change own volume, energy, and state equation. Thus the 
heterogeneous fluid may have three or more phases.  Thus, we 
use formulas (3) on the stage to calculate the intermediate 

velocities , ,
n n n

u v w  and the energy 
n

E  of particles from the 

sell with number , ,i j k  at the time moment t n t=  . The 

remaining stages are similar to the stages of above methods. 
For example, the mass transports are calculated as moving of 
corresponding share of large particle mass and small particles 
masses from the cell to corresponding surrounding sell by 
formulas (5), which are used in (6) by homogenization. 

Therefore total mass of the heterogeneous fluid under 
consideration is saved at every time step of such numerical 

approximation. The momentums , ,n 1 n 1 n 1u v w+ + +
 and the energy 

n 1E + on the step n 1+  are modeling in according formulas (6) 

by homogenization. Thus, this is a combination of above 
methods from step to step during the courses of corresponding 
numerical simulations. The method seems to be reasonable for 
numerical evaluations of such heterogeneous fluid (or gas) 
dynamics and the recalculated data is not very massive. On the 
other hand it is possible to use the particles in cells method 
with the preliminary stages for modeling of the dynamics. But 
the recalculated data is very massive in the case. 

The relations complete the description of the modified 
numerical method of simulations for calculating all parameter 
values, which describe the dynamics of the heterogeneous fluid 
under consideration with inclusions on a new time step. Further 
calculations are conducted step by step with a small enough 
time interval t  that starting from an initial configuration. 

III. NUMERICAL MODELING 

The presented modified method is designed to numerical 
modeling of following physical processes. Let consider 
graphite drops distributing uniformly in some fluid. More 
exactly, there is heterogeneous medium with graphite particles 
and the medium may be considered under high pressure as 
"fluid" with corresponding state equation. For example, we 
consider a cylinder of the medium that consist of copper with 
graphite particles. Let the cylinder be in an outside explosive 
tube device. Inducing detonation shock waves in the outside 
explosive tube device, we can observe dynamics of such shock 
waves in computer experiments by the method. 

Some computer experiment results may be found in [3].   
The results were in agreement with known results of physical 
experiments. More details of the presented modified method 
and other modifications may be found in papers [4,5,7]. 

The modified method was also applied to numerical 
simulations of plasma dynamics according to [6]. The plasma 
may be considered as gas with ionized particles. The gas and 
particles were defined by corresponding state equations. 
Equations (2) were coupled with Maxwell's equations and on 
the discrete level also. Inducing motions of the heterogeneous 
plasma in some region it was possible to observe absorption of 
the ionized particles on relevant boundaries in computer 
experiments by the method coupling with appropriate method 
for Maxwell's equations [1,6]. Alternative methods and 
corresponding references for the problem may be found in [8]. 

Moreover, the presented modified method seems to be 
perspective for numerical simulations of other absorption and 
diffusion processes in complex fluid and plasma dynamics. 
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