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Abstract—In this paper we present conditions of solvability of
the matrix equation AXB = B over a principal ideal domain. The
necessary and sufficient conditions of solvability of equation AXB
= B in term of the Smith normal forms and in term of the Hermi-
te normal forms of matrices constructed in a certain way by
using the coefficients of this equation are proposed. If a solution
of this equation exists we propose the method for its construction.
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I. INTRODUCTION

Let K denote an integer domain with an identity e=0.
Further, let K, ,, be the set of mxn matrices over K . Denote

by 1, the identity matrix of dimension n and by 0, , the zero

mxn matrix. For any matrix Ae Ky, rankA and Al

denote the rank and the transpose matrix of A respectively.
We will denote by GL(m, K) the set of invertible matrices in

Kmm -
Consider the matrix equation

AXB =C, (1)
where AeKp, BeKy |, CeKp and X is unknown

nxk matrix over K . This equation is one of the best known
matrix equations in matrix theory and its applications. The
problem of solvability of equation (1) has drawn the attention
of many mathematicians. Many authors addressed the question
when the equation (1) (over the set of real numbers R, the set
of complex number C or the set the quaternion skew field H)
has a solution belonging to a special class of matrices. They
are given necessary and sufficient conditions (using genera-
lized inverses) for the existence of the Hermitian, skew-Her-
mitian, reflexive, anti-reflexive, positive and real-positive
solutions, and the general solutions. More details on this
problem and many references to the original literature can be
found in [1-6], [8-15], [18-22].

Many authors consider the classical systems of matrix
equations over fields, commutative rings and a skew field.
Mitra [13] proposed conditions for the existence of common
solutions of the linear matrix equations A XB; =C; and

A, XB, =C, over a field. In [15] conditions for the existence

of a common solution of these equations over a principal ideal
domain were given. Similar problems were investigated in [22]
for equations over a regular ring with identity.

Let K =F be a field and let A be a nonzero matrix over

F . A generalized inverse of A denoted by A~ is a matrix

which satisfies the equation AA"A= A. It may be noted that
the generalized inverse of a matrix over a commutative ring
K with identity not always exists. The solvability criterion
for equation (1) is written in the form. A necessary and
sufficient condition for the solution of the equation AXB=C

is AACB"'B=C and in this case the general solution is
X =ACB  +U+AAUB B, where U is arbitrary nxk
matrix over the field F (see [2], [13]).

On the other hand, it is well know (see [16]) that the
equation (1) has a solution over a field F if and only if each
of the equations AY =C and ZB=C has ZB =C a solution.

Consider th le. Let A= 12 B= Lo d
onsider the example. Let A= 0o 21" Blo o an
12 . . . .
C= 0 2 be matrices over the integer number ring Z. It is
. - 10}, : .
easily verified that Y, = 01 is the solution of the equation

11
AY =C and ZO:[O J is the solution of the equation

ZB=C . Since Y=XB, we have XB=Y, . It is easily
verified that XB =Y, has no solution over ring Z. Therefore,

the solvability criterion of equation (1) cannot be transferred
to rings. On the other hand, there is a little information on the
solvability conditions of equation (1) over commutative rings
in the literature (see [4], [15], [18], [19]).

The paper is organized as follows. In Section 2, we pre-
sent necessary and sufficient conditions for solvability of the
matrix equation AXB =C over a principal ideal domain. In
Section 3 we investigate a special case of the matrix equation
AXB=C.
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Il. MAIN RESULTS

Further K =R is a principal ideal domain with an
iden-tity element. Let A€ Ry, , be a matrix of rank r over a

prin-cipal ideal ring R . For A there exist matrices
U e GL(m,R) and V € GL(n,R) such that

U,AV, =S, =diag(a,a,,...,a,,0,...,0)

is a diagonal matrix, where a;,a,, ..., a, are all nonzero and
aj |aj,1 (divides) for all i=12,...,r—1. The matrix Sp is
called the Smith normal form of the matrix A . The matrix

S(A)  Orpnr
om—r,n—r ,

Theorem 1. Let Ae Ry, , BeRy |, CeRy and let

Sa can be written in the form. S, ={0
m-r,r

where S(A) =diag(aj,ay,...,a;) Ry ;.

SA ZUAAVA = dlag (al,az, ,ap,O, ,O) ,
SB =UBBVB =diag (bl,b2, ,bq,O, J. O)
be Smith normal forms of matrices A and B respectively,
where U, e GL(M,R) , Vo €GL(N,R) , Ug € GL(k,R) and
Vg € GL(I,R). The matrix equation AXB =C is solvable over
Opi-
Pl , Where
Om—P,q Om—PJ—q
DeRyq, and D=diag(ay,ay,...,ap)Gdiag (by,by,...,by) ,
where GeRp 4.

R if and only if U,CVpg ={

Proof. Let X, €M, (R) be a solution of the equation
AXB =C . From the equality AXyB =C we obtain

UAAVAVA X U URBVE =U ACVj . 2)

G G

Put v,;lxouglze{ 12}, where GeRp 4 and
Go1 Ga

D Dy

Dy1 Do
equality (2) in the form

{ S(A) Opn-p }{ G 612}{ S(B)  0q,-q }_
Om—p.p Om-pn-p [Go1 Gz | Ok—qq Ok-gi-p

{D DlZ}
Dy; Dpa |

D12 =0p1-q, D21=0m_pq, D22 =0p_p,1—q. and
,ap)Gdiag (by,by,...,.bg) =D .

UACVg =G :{ } , where DeRp . We rewrite

From this we have

diag (ay,ay,...

Conversely, let matricesU 5 € GL(m,R) , V5 € GL(n,R),
Ug €GL(k,R) and Vg € GL(I,R) such that

UaAV, =5, =diag(a,a,,...,3,,0,...,0)

and
UBBVB :SB :diag(bl,bz,...,bq,o,...,o).
Op,1-q
Further, let U,CVpg = ’ , where
Om-p.g Om-pi-q

D =diag(ay,a,...,ap)Gdiag (b,by,....by) and GeRy, .
From the last equality we have

. :U;{S(A)G S(B) 0pq }vgl:

Om—p,q Om- p.l-q

1 -
UpS AVAlvA{O

G Op-
P8 U U lsevet=
Om-p.1-q

G 0
0

m-p.q

AV,{O
where

S(A)=diag (ag,ap,...,ap), S(B)=diag (b, by,...,by) and

G 0
pvl_q
VA|:0 }UAz Xo-

m-p.l-q

Pl=d }UAB: AX(B,
m-p,q

m-p.g Om-pi-q
Thus, the matrix X is a solution of the matrix equation

AXB =C and the proof of Theorem 1 is complete.
Corollary 1. Let the matrix equation AXB =C be solvable
over R. Then Sc =S,® and Sc =¥Sg.

Theorem 2. Let AeRy,, BeRy | and CeRy, . Fur-
ther, let U € GL(M,R), V5 € GL(n,R), Ug € GL(k,R) and
Vg € GL(I,R) such that

UAAVA =SA =d|a.g(a.1, ...,ap,O,...,O) ,

UgBVg =Sg =diag (by, ...,by,0,...,0)
be Smith normal forms of matrices A and B respectively. If

U.CVe — diag (ay, ...,ap)Gdiag (by, ...,by)  0p)4
A B — 0 Om_p’|_q !

m-p,q
where GeR,, then for arbitrary matrices T;p € Rpy_q ,
T)1 €Rp_pq and Typ € Ry_p g the matrix

G T
X :VA{ 12

UB (S R k
To1 Tzz} "

is a general solution of the equation AXB =C.

Proof. By Theorem 1 the matrix

G Op
Xo =V P
0 A|:On—p,q 0 :| A
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is a solution of the equation AXB=C . Let TpeRpy_q,
Ty1 €Rn_pq and Ty €Ry_p _q be arbitrary matrices over
a principal ideal domain R. Consider the matrix
X1 :|:Op,q le} .
T T
Itis clear that S, X1 Sg = 0p, . From this equality it follows

UalsaX7SpVat =UalsaValvaXtUgUgtsgvpt =

AVAXTUgB=AXB=0p).
) {op,q le} .
Thus, the matrix Xy =VaXtUg =Vy Ug is
T T
a solution of the homogenous matrix equation AXB =0p, . In
this connection it should be pointed out that
AXoB+ AX1B=A(Xy+ Xt)=C.
Hence, the matrix Xy = Xg + X7 is a general solution of
the matrix equation AXB = C . The proof is completed.

Let Ae Ry be a non-zero matrix with rank A =r in
0
which the first k rows are zero, i.e., A:{ 'Zj and the first

row of the matrix A; is non-zero, then, for A, there exists a
matrix W € GL(n,R) such that

0k,n
Hl 0ml,n—l
AW =Ha=[H2 Om,n1]|,

Hy 0mr,n—r_

a hy; a
where H1=|:j':|ERm1’1 , H2={ 2 1}€Dm2,2 e

H, :[hrlu-hr,r—l ar

. }eDmr‘r , and kK+m+...+m. =m .

The lower block-triangular matrix Hp is called the (right)

Hermite normal form of the matrix A and it is uniquely
defined for A (see [7]).

The Kronecker product of the matrices A=[aijje Rimn

and BeRy| is the mkxnl matrix expressible in
partitioned form as
dqq B dqn B
A®B= : S Rmk’m .
aAm1 B am,n B

The operator vector for any matrix C = [Cij Je Ry | is defined
in the following way (see [12, Chapter 12])

t
vec(C)=[c3 ... Cy Cpp ... Cy Crt -+~ Cmt "

i.e. the entries of C are stacked columnwise forming a vector
of length ml .

Let AeRyn, BeRy ) and CeRy, . Use the Krone-
cker product we will write the equation AXB =C as the vec-

tor equation A®BTvec(X)=vec(C) , where B! is the

transpose matrix of B (see [12, Chapter 12, Theorem
12.3.1]). Thus, applying Theorem 1 in [17] to this system of
linear equations, we have the following result.

Theorem 3. Let AeRy,,, BeRy| andCeRp, . The

matrix equation AXB =C is consistent if and only if the
Hermite normal forms of the matrices

lA@ B! OmuJ and lA@ B' vec (C)J coincide.
Corollary 2. Let A1 € Rm,n ) Bi S Rk,| and Ci € Rm,| ,
i=12. The matrix equations A XB; =C; and A;XB, =C,

have a common solution over R if and only if the Hermite
normal forms of the matrices

A ®B] Opy and A ®B  vec(Cy) coincide.
Ao ®BY Opy Ao ®Bj  vec(Cy)

I11. APPLICATIONS

Let A€ Ry, be a nonzero matrix. Special case of matrix
equation (1) is the following matrix equation AXA= A, where
X is unknown nxm matrix over R . Any solution of this

equation is called generalized inverse and is denoted by A~
We note that there exist matrices over R which do not have
generalized inverses. The problem when generalized inverse
exists for every matrix over a commutative ring K with an
identity element was study by many authors (see [4], [19]
and references therein). One of the applications of theorems 1
and 2 is the following proposition.

Theorem 4. Let Ae Ry, , be a matrix of rank A=r . The
equation AXA=A has a solution over R if and only if

II’ Or,m—r

S =UAV :{ } where U e GL(m,R) and

0n—r,r On—r,m—r
V eGL(n,R).

If equation AXA=A is consistent then for arbitrary
matrices Py € Ry y_r, Pop € Ry and Py € Ry the

matrix Xp :V,{ 't P }UB is its general solution.
Pa1 P

Proof. Let X € Ry m be a solution of the matrix equation
AXA=A. Further, let U e GL(m,R) and V € GL(n,R) such
that UpAVp =S, =diag(ay, ...,a,,0,...,0). By Theorem 1
we have S,V XU ™S, =S, .
D21 Do
equality S,V ‘1X0U ‘1SA =S we find that

Put V_1X0U -1 ={ } , where D € Ry ,.From the
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S(A)DS(A)=S(A),
where S(A) =diag(ay,...,a;)e Ry, is a nonsingular matrix
We can now easily show that S(A) e GL(r,R) . So, we can

Ir Or,n—r
Om—r,r Om—r,n—r
II’ Or,m—r

0n—r,r
U eGL(n,R) and V e GL(m,R), then by Theorem 1 we have

assume that S(A) =1, . Thus, S, :{

Conversely, if S, =UAV :{ } , Where

On—r,m—r

| 0, m_ . .
r rm=r }U is a solution of

0n—r,r 0n—r,n—r

that the matrix X, :V[
the equation AXA= A. By Theorem 2 for arbitrary matrices
Po€eRrmr» PoreRy and Py e Ry the matrix

X, =V G P12
F A P21 22

AXA = A. This completes the proof of Theorem 3.

}UB is a general solution of the equation

Corollary 3. Let Ae Ry, be a matrix with the Smith
|

r Or,m—r

normal form S, :{ } . Then for every solution

On—r,r On—r,m—r
X, of the equation AXA= A both matrices XyA and AXq

are idempotent matrices of rank r.
Proof. Let a matrix X, be a solution of the equation

AXA = A. From equality AX,A= A it follows that AX, and
XoA are nonzero matrices. Thus,

AXgAXq = (AX()? = AXq .
Similarly, XoAXoA=(XoA)2 =XoA and the proof of
the Corollary is complete.

IV. CONCLUSIONS

Necessary and sufficient conditions for existence and
expression of a solution of the matrix equation AXB =C over
a principal ideal domain are derived. Some results are true for
this matrix equation over domains of elementary divisors and
Bezout domains.
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