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Abstract—In this paper we present conditions of solvability of 

the matrix equation AXB = B over a principal ideal domain. The 

necessary and sufficient conditions of solvability of equation AXB 

= B in term of the Smith normal forms and in term of the Hermi-

te normal forms of matrices constructed in a certain way by 

using the coefficients of this equation are proposed. If a solution 

of this equation exists we propose the method for its construction. 

Keywords – matrix equation, solution, domain of principal 

ideal 

I.  INTRODUCTION 

Let K  denote an integer domain with an identity 0e . 

Further, let nmK ,  be the set of nm  matrices over K . Denote 

by nI  the identity matrix of dimension n  and by nm,0  the zero 

nm  matrix. For any matrix nmKA ,  Arank  and tA  

denote the rank and the transpose matrix of A  respectively. 

We will denote by ),( KmGL  the set of invertible matrices in 

mmK , . 

Consider the matrix equation  

 ,CAXB =  () 

where nmKA , , lkKB , , lmKC ,  and X  is unknown 

kn  matrix over K . This equation is one of the best known 

matrix equations in matrix theory and its applications. The 

problem of solvability of equation (1) has drawn the attention 

of many mathematicians. Many authors addressed the question 

when the equation (1) (over the set of real numbers R, the set 

of complex number C or the set the quaternion skew field H) 

has a solution belonging to a special class of matrices. They 

are given necessary and sufficient conditions (using genera-

lized inverses) for the existence of the Hermitian, skew-Her-

mitian, reflexive, anti-reflexive, positive and real-positive 

solutions, and the general solutions. More details on this 

problem and many references to the original literature can be 

found in [1–6], [8–15], [18–22].  
Many authors consider the classical systems of matrix 

equations over fields, commutative rings and a skew field. 
Mitra [13] proposed conditions for the existence of common 

solutions of the linear matrix equations 111 CXBA =  and 

222 CXBA =  over a field. In [15] conditions for the existence 

of a common solution of these equations over a principal ideal 
domain were given. Similar problems were investigated in [22] 
for equations over a regular ring with identity. 

Let FK =  be a field and let A  be a nonzero matrix over

F . A generalized inverse of A  denoted by −A  is a matrix 

which satisfies the equation AAAA =− . It may be noted that 
the generalized inverse of a matrix over a commutative ring 
K  with identity not always exists. The solvability criterion 
for equation (1) is written in the form. A necessary and 
sufficient condition for the solution of the equation CAXB =  

is CBCBAA =−−  and in this case the general solution is 

BUBAAUCBAX −−−− ++= , where U  is arbitrary kn  
matrix over the field F  (see [2], [13]).  

On the other hand, it is well know (see [16]) that the 
equation (1) has a solution over a field F  if and only if each 
of the equations CAY =  and CZB =  has CZB =  a solution. 

Consider the example. Let 







=

20

21
A , 








=

20

01
B  and 









=

20

21
C  be matrices over the integer number ring Z. It is 

easily verified that 







=

10

01
0Y  is the solution of the equation 

CAY =  and 







=

10

11
0Z  is the solution of the equation 

CZB = . Since XBY = , we have 0YXB = . It is easily 

verified that 0YXB =  has no solution over ring Z. Therefore, 

the solvability criterion of equation (1) cannot be transferred 
to rings. On the other hand, there is a little information on the 
solvability conditions of equation (1) over commutative rings 
in the literature (see [4], [15], [18], [19]). 

The paper is organized as follows. In Section 2, we pre-
sent necessary and sufficient conditions for solvability of the 
matrix equation CAXB =  over a principal ideal domain. In 

Section 3 we investigate a special case of the matrix equation
CAXB = .  
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II. MAIN RESULTS 

Further RK =  is a principal ideal domain with an 

iden-tity element. Let nmRA ,  be a matrix of rank r  over a 

prin-cipal ideal ring R . For A  there exist matrices 

),( RmGLU   and ),( RnGLV   such that  

)0,,0,,,,( 21  rAAA aaadiagSAVU ==   

is a diagonal matrix, where raaa ,,, 21   are all nonzero and 

1| +ii aa  (divides) for all 1,,2,1 −= ri  . The matrix AS  is 

called the Smith normal form of the matrix A . The matrix 

AS  can be written in the form.

 









=

−−−

−

rnrmrrm

rnr
A

AS
S

,,

,

00

0)(
, 

where rrr RaaadiagAS ,21 ),,,()( =  . 

Theorem 1. Let nmRA , , lkRB , , lmRC ,  and let  

)0,,0,,,,( 21  pAAA aaadiagAVUS == , 

)0,,0,,,,( 21  qBBB bbbdiagBVUS ==  

be Smith normal forms of matrices A  and B  respectively, 

where ),( RmGLU A  , ),( RnGLVA  , ),( RkGLU B   and 

),( RlGLVB  . The matrix equation CAXB =  is solvable over 

R  if and only if 







=

−−−

−

qlpmqpm

qlp
BA

D
CVU

,,

,

00

0
, where

qpRD , , and ),,,(),,,( 2121 qp bbbdiagGaaadiagD = , 

where qpRG , . 

Proof. Let )(,0 RMX kn  be a solution of the equation

CAXB = . From the equality CBAX =0  we obtain  

 BABBBAAA CVUBVUUXVAVU =−− 1
0

1  () 

Put 







==−−

2221

121
0

1

GG

GG
GUXV BA , where qpRG ,  and 









==

2221

12

DD

DD
GCVU BA , where qpRD , . We rewrite 

equality (2) in the form 

=
























−−−

−

−−−

−

plqkqqk

qlq

pnpmppm

pnp BS

GG

GGAS

,,

,

2221

12

,,

,

00

0)(

00

0)(
 










2221

12

DD

DD
. 

From this we have  

qlpD −= ,12 0 , qpmD ,21 0 −= , qlpmD −−= ,22 0 , and 

DbbbdiagGaaadiag qp =),,,(),,,( 2121   .  

Conversely, let matrices ),( RmGLU A  , AV ),( RnGL , 

),( RkGLU B   and ),( RlGLVB   such that  

)0,,0,,,,( 21  pAAA aaadiagSAVU ==   

and 

)0,,0,,,,( 21  qBBB bbbdiagSBVU == . 

Further, let  







=

−−−

−

qlpmqpm

qlp
BA

D
CVU

,,

,

00

0
, where 

),,,(),,,( 2121 qp bbbdiagGaaadiagD =  and qpRG , . 

From the last equality we have 

=







= −

−−−

−− 1

,,

,1

00

0)()(
B

qlpmqpm

qlp
A V

BSGAS
UC

 

=






 −−

−−−

−−− 11

,,

,11

00

0
BBAA

qlpmqpm

qlp
AAAA VSUU

G
VVSU  

,
00

0
0

,,

,
BAXBU

G
AV A

qlpmqpm

qlp
A =









−−−

−
 

where  

),,,()( 21 paaadiagAS = , ),,,()( 21 qbbbdiagBS =  and  

0
,,

,

00

0
XU

G
V A

qlpmqpm

qlp
A =









−−−

−
. 

Thus, the matrix 0X  is a solution of the matrix equation 

CAXB =  and the proof of Theorem 1 is complete.  

Corollary 1. Let the matrix equation CAXB =  be solvable 

over R . Then = AC SS  and BC SS = .  

Theorem 2. Let nmRA , , lkRB ,  and lmRC , . Fur-

ther, let ),( RmGLU A  , ),( RnGLVA  , ),( RkGLUB   and 

),( RlGLVB   such that  

)0,,0,,,( 1  pAAA aadiagSAVU == , 

)0,,0,,,( 1  qBBB bbdiagSBVU ==   

be Smith normal forms of matrices A  and B  respectively. If 









=

−−−

−

qlpmqpm

qlpqp
BA

bbdiagGaadiag
CVU

,,

,11

00

0),,(),,( 
, 

where qpRG , , then for arbitrary matrices qkpRT − ,12 , 

qpnRT ,21 −  and qkpnRT −− ,22  the matrix  

knBAT RU
TT

TG
VX ,

2221

12









=  

is a general solution of the equation CAXB = .  

Proof. By Theorem 1 the matrix  

A
qkpnqpn

qkp
A U

G
VX 








=

−−−

−

,,

,
0 00

0
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is a solution of the equation CAXB = . Let qkpRT − ,12 ,

qpnRT ,21 −  and qkpnRT −− ,22  be arbitrary matrices over 

a principal ideal domain .R  Consider the matrix  









=

2221

12,0

TT

T
X

qp
T  . 

It is clear that lmBTA SXS ,0= . From this equality it follows 

== −−−−−− 111111
BBBBTAAAABBTAA VSUUXVVSUVSXSU  

lmHBTA BAXBUXAV ,0== . 

Thus, the matrix B
qp

ABTAH U
TT

T
VUXVX 








==

2221

12,0
 is 

a solution of the homogenous matrix equation .0 ,lmAXB =  In 

this connection it should be pointed out that  

.)( 00 CXXABAXBAX TT =+=+  

Hence, the matrix Tg XXX += 0  is a general solution of 

the matrix equation CAXB = . The proof is completed.  

 Let nmRA ,  be a non-zero matrix with rArank =  in 

which the first k rows are zero, i.e., 







=

1

,0

A
A

nk  and the first 

row of the matrix 1A  is non-zero, then, for A, there exists a 

matrix ),( RnGLW   such that  

,

0

0

0

0

,

1,2

1,1

,

2

1























==

−

−

−

rnmr

nm

nm

nk

A

r
H

H

H

HAW


  

where 1,
1

1 1*
mR

a
H 








= , 2,

121
2 2*

mD
ah

H 







= ,  , 

rm
rrrr

r r
D

ahh
H ,

1,1

*









=

−
, and mmmk r =+++ 1 . 

The lower block-triangular matrix AH  is called the (right) 

Hermite normal form of the matrix A  and it is uniquely 
defined for A  (see [7]).  

The Kronecker product of the matrices   nmij RaA ,=  

and lkRB ,  is the nlmk   matrix expressible in 

partitioned form as  

nlmk

nmm

n

R

BaBa

BaBa

BA ,

,1

111



















=







. 

The operator vector for any matrix =C    lmij Rc ,  is defined 

in the following way (see [12, Chapter 12])  

 t
mlmll ccccccC  1221111)(vec = ,  

i.e. the entries of C  are stacked columnwise forming a vector 

of length ml .  

Let nmRA , , lkRB ,  and lmRC , . Use the Krone-

cker product we will write the equation CAXB =  as the vec-

tor equation )(vec)(vec CXBA T = , where tB  is the 

transpose matrix of B  (see [12, Chapter 12, Theorem 

12.3.1]). Thus, applying Theorem 1 in [17] to this system of 

linear equations, we have the following result.  

Theorem 3. Let nmRA , , lkRB ,  and lmRC , . The 

matrix equation CAXB =  is consistent if and only if the 

Hermite normal forms of the matrices  

 1,0ml
tBA   and  )(vec CBA t  coincide. 

Corollary 2. Let nmi RA , , lki RB ,  and lmi RC , , 

2,1=i . The matrix equations 111 CXBA =  and 222 CXBA =  

have a common solution over R  if and only if the Hermite 
normal forms of the matrices  



















1,22

1,11

0

0

m
t

m
t

BA

BA
 and 

















)(vec

)(vec

222

111

CBA

CBA
t

t

 coincide. 

III. APPLICATIONS  

Let nmRA ,  be a nonzero matrix. Special case of matrix 

equation (1) is the following matrix equation AAXA = , where 
X  is unknown mn  matrix over R . Any solution of this 

equation is called generalized inverse and is denoted by 
−A  

We note that there exist matrices over R  which do not have 
generalized inverses. The problem when generalized inverse 
exists for every matrix over a commutative ring K  with an 
identity element was study by many authors (see [4], [19] 
and references therein). One of the applications of theorems 1 
and 2 is the following proposition.  

Theorem 4. Let nmRA ,  be a matrix of rArank = . The 

equation AAXA =  has a solution over R  if and only if 









==

−−−

−

rmrnrrn

rmrr
A

I
UAVS

,,

,

00

0
, where ),( RmGLU   and 

),( RnGLV  .  

If equation AAXA =  is consistent then for arbitrary 

matrices rmrRP − ,12 , rrnRP ,21 −  and rmrnRP −− ,22  the 

matrix B
r

AP U
PP

PI
VX 








=

2221

12
 is its general solution. 

Proof. Let mnRX ,0   be a solution of the matrix equation

AAXA = . Further, let ),( RmGLU   and ),( RnGLV   such 

that .)0,,0,,,( 1  rAAA aadiagSAVU ==  By Theorem 1 

we have AAA SSUXVS =−− 1
0

1
.  

Put 







=−−

2221

121
0

1

DD

DD
UXV , where .,rrRD  From the 

equality AAA SSUXVS =−− 1
0

1  we find that  
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)()()( ASADSAS = , 

where rrr RaadiagAS ,1 ),,()( =   is a nonsingular matrix 

We can now easily show that ),()( RrGLAS  . So, we can 

assume that rIAS =)( . Thus, 







=

−−−

−

rnrmrrm

rnrr
A

I
S

,,

,

00

0
. 

Conversely, if 







==

−−−

−

rmrnrrn

rmrr

A

I
UAVS

,,

,

00

0
, where 

),( RnGLU   and ),( RmGLV  , then by Theorem 1 we have 

that the matrix U
I

VX
rnrnrrn

rmrr








=

−−−

−

,,

,
0 00

0
 is a solution of 

the equation AAXA = . By Theorem 2 for arbitrary matrices

rmrRP − ,12 , rrnRP ,21 −  and rmrnRP −− ,22  the matrix 

BAP U
PP

PG
VX 








=

2221

12
 is a general solution of the equation

AAXA = . This completes the proof of Theorem 3. 

Corollary 3. Let nmRA ,  be a matrix with the Smith 

normal form 







=

−−−

−

rmrnrrn

rmrr

A

I
S

,,

,

00

0
. Then for every solution 

0X  of the equation AAXA =  both matrices AX 0  and 0AX  

are idempotent matrices of rank r.  

Proof. Let a matrix 0X  be a solution of the equation

AAXA = . From equality AAAX =0  it follows that 0AX  and 

AX0  are nonzero matrices. Thus,  

0
2

000 )( AXAXAXAX == . 

Similarly, AXAXAAXX 0
2

000 )( ==  and the proof of 

the Corollary is complete.  

IV. CONCLUSIONS 

Necessary and sufficient conditions for existence and 
expression of a solution of the matrix equation CAXB =  over 

a principal ideal domain are derived. Some results are true for 
this matrix equation over domains of elementary divisors and 
Bezout domains. 
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