
 

Evaluating predictions of the soil moisture model 

with data assimilation by the triple collocation 

method 
https://doi.org/10.31713/MCIT.2020.11 

Olena Kozhushko, Mykhailo Boiko, Petro Martyniuk, 

Olha Stepanchenko 

EOS Data Analytics, 

Department of Computer Sciences and Applied Mathematics 

National University of Water and Environmental Engineering 

Rivne, Ukraine 

ol.d.kozhushko@nuwm.edu.ua 

Mykola Kovbasa 

EOS Data Analytics, 

Division of Physico-Technological Problems in 

Semiconductor IR Engineering 

V.Ye. Lashkaryov Institute of Semiconductor Physics 

of the NAS of Ukraine 

Kyiv , Ukraine 

Mykola Uvarov 

EOS Data Analytics, 

Department of Computational Physics 

G. V. Kurdyumov Institute for Metal Physics 

Kyiv , Ukraine  

 
Abstract— This paper describes a nonlinear soil moisture 

transport problem, solved with addition of satellite soil moisture 

observations. The satellite data are assimilated into the model 

using Newtonian nudging method.  Evaluation is done by the use 

of triple collocation method, which involves three data sources: 

model results, ground station measurements and satellite 

observations. The results demonstrates that the presented model 

is capable of producing results with accuracy close to the ground 

station measurements. 
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I.  INTRODUCTION 

Soil moisture data can be valuable in numerous practical 
applications, from agriculture to climate forecasts. Up-to-date 
information on moisture can improve the precision of 
predictions, optimize water resource management and advice on 
irrigation planning. These applications demand frequent and 
accurate data provided by either measurements or model 
simulations.  

In-situ observations are usually considered the most reliable 
soil moisture measurements. To provide immediate observation 
data at different soil depth, ground stations use multiple 
measurement methods, such as oven-drying, neutron probe, 
capacitance method etc. However, they are expensive and 
provide only isolated data at one observation point.  

Another way to measure soil moisture is by satellite imagery. 
Recently, the method became popular in real-world applications 
due to its increasing quality and availability. Satellite microwave 
sensors are able to measure soil moisture in different spatial 
scales. The accuracy of these observations is satisfactory for 

global scale, but derivation of precise local data requires 
complex image processing algorithms. Moreover, microwave 
sensors measure only surface soil moisture (0-5 cm layer), and 
provide data on a few days interval, which cannot accurately 
represent the state of the system. 

Land models are another alternative to assess soil moisture. 
Model simulations provide continuous data of all system states, 
and are cheap to perform. However, they unavoidably contain 
errors due to generalizations of process physics and choice of 
model parameters.  

Since each of the described methods has its own strengths 
and weaknesses, the best results are achieved by combining 
different data sources. For example, insertion of satellite data 
into the moisture model is widely used in practice. This 
approach, called data assimilation, enables the model to adapt to 
observed data, and to achieve higher precision level than 
provided by each data source alone. There are multiple data 
assimilation algorithms available, some of which are described 
in [1]. In our study, we implement a method called Newtonian 
relaxation or nudging. 

Newtonian nudging is a rather simple and effective data 
assimilation method, first used for oceanography problems. It is 
also widely used in hydrology problems, and has been 
implemented into a number of hydrological and environmental 
models, such as GLEAM [2]. The method consists in adding a 
nudging term, multiplied by the difference between model 
prediction and observed value, into the governing equation. The 
term works as a physical force that relaxes the result towards 
observations. 

In this study, we describe our model and data assimilation 
approach, and also perform a statistical verification test. 
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Traditionally, the results are validated against in-situ 
measurements, which are taken as a benchmark for comparison. 
However, among the variety of statistical methods designed to 
evaluate prediction accuracy, we chose the triple collocation 
method as it does not imply knowing the absolute truth. The 
method involves comparison of three independent data sources, 
where each is assumed to contain errors of some sort.  Therefore, 
the method is effective for real-world validation tests, and is 
often employed in evaluation of soil moisture models [3, 4]. 

II. MATHEMATICAL MODEL 

A. Problem setting 

Our model includes moisture transfer problem based on the 

Richards equation. The problem domain is one-dimensional of 

thickness l, with downward x axis and x=0 at the soil surface. 

The boundary value problem setting is as follows: 
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Here θ is absolute soil moisture, h – pressure head, 𝑘 – soil 
hydraulic conductivity, S(h, x, t) – root water uptake, Q(t) – 
precipitation rate, Es(t) – soil evaporation rate, h0(x) is initial 
condition for pressure head. Potential evaporation Es is derived 
from meteorological parameters [5], root water uptake S is 
calculated according to potential evapotranspiration and water 
availability based on the Feddes model [6]. 

Since the Richards equation requires a translation rule 
between moisture and pressure head values, we chose a 
widespread Mualem–van Genuchten model [7]. The model is 
represented by the following equations: 
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where θmin, θmax are residual and saturation water content, 𝑘s – 
saturated soil hydraulic conductivity, S – saturation degree, α, n, 
l – empirical model parameters. These parameters define water 
retention curve of the soil. The reliable values of Mualem–van 
Genuchten model parameters for basic soil types can be found 
in the various researches on the topic, as well as estimated by the 
program systems like Rosetta [8]. 

Substituting (5) into (1), the governing model equation is 
rewritten in pressure heads and becomes 
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calculated analytically according to (5), (6). 

The one-dimensional problem described above is then 
discretized using an implicit time scheme and solved on a 
uniform grid with. Specifically, the homogeneous finite 
difference scheme is used for numerical calculations, since it is 
rather cheap computationally and allows variable coefficients in 
equations. To deal with nonlinearity of Mualem–van Genuchten 
relations, we use an implicit iterative scheme described by 
Samarskiy. The scheme requires doing additional solving 
iterations on each time step, recalculating parameters until the 
solution converges. This scheme is not optimal in the sense of 
computational time, but is simple to implement and has good 
convergence [9]. 

B. Newtonian nudging assimilation 

Newtonian nudging is a smoother algorithm that modifies 
the simulation result on each time based on the past and future 
observations. The method is not as popular as the filtering 
methods, e.g. ensemble Kalman filters, but it is suited for 
boundary-value problems since it is incorporated directly into 
the model governing equation. Unlike the filtering methods that 
treat the solution as a random variable, Newtonian nudging 
introduces a physical force into the equation, yielding smooth 
and physically-sensible results. The nudging term, inserted into 
the Richard equation (1), has the following form: 
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where θobs is observed surface soil moisture, G – nudging factor, 
W(x, t) – weight function, and ε(x) is the degree of trust to the 
observations, limited by the interval of [0; 1].  

The core of the term is the difference between observed and 
simulated soil moisture. In the general case, the term can include 
a few observations, past and future, at the same time. The 
nudging factor represents the magnitude of the nudging force. It 
is recommended that this force should correspond to the slowest 
process in the model. The weight function corrects the force of 
nudging based on the distance from observation point and time 
span between the simulation and observation time [10]. 

Original formulation of Newtonian nudging uses constant 
nudging factor. However, we use an adaptive relation to 
calculate the factor considering current soil retention and 
permeability: 
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III. SATELLITE MOISTURE RETRIEVAL 

Data assimilation procedure requires low-noise and frequent 
satellite data. Active instruments on Sentinel-1, RADARSAT, 
RISAT-1 etc. can provide high-resolution soil moisture data 
with appropriate algorithms; however, as a rule, they have a 
sparse repeated interval around 10 days worldwide. On the other 
hand, passive instruments on SMAP, SMOS, AMSR-E and 
AMSR2 can provide data with repeated intervals of a couple of 
days worldwide, although without disaggregation algorithms 
these instruments provide low resolution of about tens of 
kilometers.  

A disaggregation method is applied to obtain high-resolution 
soil moisture data from passive sensors AMSR-E, AMSR2 and 
SMAP, land surface temperature from AMSR2 and AMSR-E 
data. To calculate dielectric permittivity of the soil, we applied 
Single Channel Algorithm – Vertical [11] for SMAP 
disaggregated data and Land Parameter Retrieval Model for 
AMSR-E and AMSR2 data.  The method allows us to get high-
resolution dielectric permittivity maps with 250×250 m 
resolution, which is close to the field scale. We applied the 
Mironov model for L-band [12], Dobson model [13] for C-band 
to convert dielectric permittivity to soil moisture content. 

IV. RESULTS AND DISCUSSION 

A. Evaluation metrics 

We apply the triple collocation method to combine and 
assess the errors of ground station measurements, satellite 
observations and model simulations. The method requires three 
data sets θ1, θ2 and θ3, each containing the same number of 
estimations of some variable. Each of them differs from the 
hypothetical truth θ by a residual r, as shown by the equations 

 

1 1

2 2

3 3

,

,

.

r

r

r

 

 

 

= +

= +

= +

 (10) 

The quality of each dataset can then be estimated as a 
variance of the residuals, denoted σ1, σ2, σ3 respectively. After 
eliminating the hypothetical truth from the equations (10) and 
taking average over the resulting equation, we get the following 
expressions: 
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where ‹·› denotes covariance operator. Note that the method 

statistical justification implies the datasets are unbiased, so any 
bias should be removed first [4]. 

The model results are also evaluated against the ground 
station data using the traditional metrics, such as average 
absolute deviation (AAD), root mean square deviation (RMSD), 
bias, Pearson correlation (R) and index of agreement (IoA).  

B. Numerical experiments 
To achieve statistically relevant accuracy evaluation, we 

conducted a large-scale numerical experiment using the open 
ground station data provided by the International Soil Moisture 
Network (ISMN) [14].  

The weather data were downloaded from the NOAA 
database as for the nearest meteorological station. Soil 
parameters were assumed based on the soil type individually for 
each station, based on the data provided by SoilGrids. Initial 
conditions were set according to the satellite moisture data. 

The experiment was conducted for 2018 over 659 ground 
stations in the USA. Out of them, 178 stations were excluded 
because of the issues with other data for the location. Therefore, 
the summary presented below includes experiment results for 
the remaining 481 stations. Note that comparison has been done 
only for the soil surface moisture since some ground stations 
provided no belowground data, and satellites sense moisture at 
the top soil layer only. 
C. Results 

We start from the comparison of model simulation results 
and ground station observations. The averaged metrics over all 
stations are presented in Table 1. The analysis shows that 
absolute deviation and RMSD are rather high, but they are 
mostly caused by bias. The bias can be attributed to incorrect 
initial conditions or soil parameters. These are two of the key 
model parameters, but the chosen values were rough due to the 
great number of stations in the experiment. Nevertheless, the 
average unbiased RMSE is 0.08758, which indicates that the 
results can be improved greatly if the source of bias is 
eliminated.  The average correlation is rather weak, however, the 
index of agreement implies a tolerably good convergence of the 
datasets.  

TABLE I.  EVALUATION OF THE MODEL RESULTS AGAINST GROUND STATION 

MEASUREMENTS  

Metrics AAD RMSD Bias R IoA 

Value 0.10948 0.13039 0.06554 0.25661 0.46532 

Further analysis of the latter two characteristics is shown on 
Fig. 1. The first frequency chart indicates that many simulations 
demonstrated negative correlation with ground station data. This 
may be primary due to imprecise weather data, e.g. when the 
meteorological station is very remote, and its data differ from 
actual situation on the site. Another reason may be the 
groundwater, which can cause a significant influence and is not 
yet accounted for in the model. Most of the positive correlation 
values are near the 0.3-0.4 interval, which is medium correlation. 
The index of agreement demonstrates a normal-like frequency 
distribution, clustered around the 50% value. It indicates that the 
datasets demonstrate a stable agreement with each other, even if 
correlation is weak. 
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Figure 1.  Frequency histogram of the correlation (top) and index of 

agreement (bottom) between the model and the ground station data 

 

Figure 2.  Scatterplot of the model variance (vertical axis) against the ground 
station measurements (horizontal axis), estimated by the triple collocation 

method 

The triple collocation analysis yielded an average 0.05258, 
0.04290 and 0.07473 variances for ground station 
measurements, satellite observations and model simulations, 
respectively. These results suggest the model is the least 
accurate of the estimations, yet its error is comparable with that 
of in-situ measurements.  

Fig. 2 demonstrates the relation between the variances of 
ground station and model data. The dots represent the variance 
pairs, and the thin black line represents y = x. Most of the pairs 
are above the line, meaning model estimations are mostly less 
credible than in-situ measurements. However, the points are 
mostly clustered near the line, and more than 25% of the model 
variances are better than that of the measurements. This can be 
considered a favorable result, since it proves that in a sufficient 
number of cases model estimations are as accurate as the ground 
sensors. 
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