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Abstract—The article proposes a modification to the 

mathematical model of the immunotherapy influence on the 

immune response dynamics considering small-scale diffusion 

perturbations. The corresponding singularly perturbed model 

problem with time-delay solution is reduced to a sequence of 

solutions without time-delay. Sought functions are represented in 

the form of asymptotic series as perturbations of solutions to the 

corresponding degenerate problems. We present the results of 

numerical modeling that illustrate the influence of diffusion 

redistribution of active factors on the infectious disease dynamics 

under immunotherapy. The results demonstrate the decrease in the 

maximum concentration level of antigens in the locus of infection 

as a result of their diffusion redistribution.  

Keywords—infectious disease model; dynamic systems; 

asymptotic methods; singularly perturbed problems 

I.  INTRODUCTION  

The known simplest model of infectious disease of              
G.I. Marchuk [2] has been modified in [1] to take into account 
the impact of immunotherapy. In particular, it proposes to 
describe the dynamics of native and donor antibodies in the 
organism separately and to introduce an additional function of 
the donor antibodies concentration K(t). The modified model of 
the immunotherapy effect on the dynamics of immune response 
in infectious disease is presented in [1] by the following 
differential equations system (with a time-delay):  
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where V(t) is the antigens concentration, particles/mL; C(t) is 
the plasma cells concentration that are carriers and producers of 
their native specific antibodies, cells/ mL; F(t) is the native 
specific antibodies concentration that neutralize the 
corresponding antigens, particles/mL; m(t) is relative 

characteristics of the lesion of the target organ; (t) is the 

Heaviside function;  is the rate of reproduction of antigens, 

day-1; , 1 are coefficients that take into account the interaction 
result of antigens with native and donor specific antibodies, 

respectively, mL/( particles day);  is  the period of time (delay) 

required to form a cascade of plasma cells, days; c is the 

inverse value of the plasma cells lifespan, day-1;  is the 
coefficient of immune system stimulation, 

cellmL/(particlesmoleculeday); C* is the level of plasma cells 

in a healthy organism, cells/mL;   is the production speed of 
native specific antibodies by one plasma cell, 

molecule/(cellday); f, k are the inverse values of the 
existence duration of their native and donor specific antibodies, 

respectively, day-1; , 1  are the consumption of native and 
donor specific antibodies to neutralize one antigen, 

respectively, molecule/particles;   is the damage rate of cells 

of the target organ, mL/(particlesday); m  is the recovery rate 

of target organ, day-1. The function (m) takes into account the 
effect of decreased antibody production while the target organ 

is significantly damaged. On the interval 0mm* the value of 

(m) equals one, i.e., the immunological organs fully function, 

regardless of the disease severity. Under m*  m < 1, the 
efficiency of the organism is rapidly declining. The function 
u(t) describes the rate of the introduction of donor antibodies 

into the organism and satisfies restrictions 0  u(t)  B, 

0  t  T  [1]. 
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The use of immunotherapy is effective in the treatment of 
acute forms of infectious disease. In the absence of antigens 
(V = 0), the introduction of donor bodies, of course, is not 
carried out, i.e. u(t)=0 and K(t)=0. The values V, C, F, m of the 
stationary solution to the system (1) that corresponds to the state 
of a healthy organism are the same as in the stationary solution 
to the basic model of infectious disease. Reference [2] shows 

that the condition 
*

fC    is asymptotically stable during 

the infection with a dose of antigens 
0V  that does not exceed a 

certain level of the immunological barrier 
*V  

 ( ) ( )0 * *

fV V C    = −  () 

Let us note that the construction of various mathematical 
models of immune response dynamics with different levels of 
detail is based on general principles that relate to the 
mechanisms of interaction of the immune system with 
pathogens [3-5]. As in the simplest model of an infectious 
disease and in its modification described above, we assume that 
the environment of the "organism" is homogeneous, and all its 
process components are immediately mixed.  

According to generally accepted notions of immune defense 
today, the immune response triggering does not occur 
immediately after antigens enter the organism, but begins after 
the recognition of a foreign antigen by binding to a specific 
receptor on the membrane of a mature lymphocyte. After 
stimulating the immune system, a cascade population of plasma 
cells is formed over a period of time, which synthesize the 
appropriate type of antibody that is able to bind the recognized 
antigens. Although the above mechanism of the immune 
response is quite simplified, it allows for antigens that are not 
immediately neutralized by the immune system, spread by the 
organism, infect cells and reproduce. As a result, certain foci of 
infection with a higher concentration of antigens are formed in 
the organism. It is natural to assume that the generated antigens 
in the organism are redistributed over time from the infection 
foci to the surrounding uninfected areas, then the infected area 
is increasing and the concentration of antigens at the epicenter 
of infection is decreasing.  

The aim of this work is taking into account small-scale 
diffusion perturbations in the research. 

II. PROBLEM STATEMENT 

We modify the immune response dynamic model in the 
conditions of immunotherapy (1) - (2) by introducing additional 
terms that describe small-scale diffusion effects 
("redistributions"). The corresponding spatio-temporal 
dynamics of the model components of the infectious disease 

process in the set ( ) ; 0ZG x,t : x t= − +  +  is 

described by the following system of differential equations with 
time-delay: 
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where V(x,t), C(x,t), F(x,t), K(x,t), m(x,t) are concentrations of 
antigens, plasma cells, native and donor antibodies and the 
value of the relative characteristics of the lesion of the target 

organ at point x at time t, respectively, 
VD , 

FD , 
KD , 

2

CD , 2

mD  are coefficients of spatial diffusion redistribution 

of antigens, native and donor antibodies, plasma and affected 
cells, respectively,   is a small parameter that characterizes the 

small-scale influence of the respective components in 
comparison with other (dominant) components of the process.  

For beginning we consider the case when the immune 
system mechanism is fully complete and does not depend on the 

disease severity ( ( ) 1m = ). Using the steps method [6], we 

reduce the solution of the problem (4) - (5) with a time-delay to 
a sequence of solutions of problems without time-delay (we 
assume that the system (4) is dimensionless):  
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Let us note that the required order of smoothness of the 
corresponding solutions for t = , 2t = , …, t n= , …  is 

provided by consistency conditions for t =− , 0t = , … [7], 

besides the usual conditions of smoothness with respect to 
functions (5) of the initial conditions of the model. In particular, 
the following condition must be satisfied  



Modeling, control and information technologies – 2020 

 
( ) ( ) ( )( ) ( )

( )( ) ( )

0 0 0

0

2

0 0

0

0 0

t

*

С C xx

C x, F x, K x, V x,

C x, С D C x, .

   

 

 = − + − − −

− − +
 

Taking into account that we consider small-scale diffusion 
redistributions of the active components of immune response in 
comparison with other components, we use the asymptotic 
method to solve the corresponding singularly perturbed model 
problems (6) - (7) [7,8]. In particular, the solutions of problems 

(6) - (7) are presented in the form of asymptotic series ( )jV x,t =
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of the solutions of the corresponding degenerate problems [9], 
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Let us note that the proposed approach can be easily 

"transferred" to other sets ZG , including finite ones. In this case 

you need to use more complex series instead of the ones used 
here (see, for example, [7,8,9]). 

Estimating the remainders 
V

NjR , 
C

NjR , 
F

NjR , 
W

NjR , 
m

NjR  and 

establishing spatio-temporal intervals of convergence in the 
prediction of real processes is done using the maximum 
principle similarly to [7,8,9]. 
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III.NUMERICAL EXPERIMENTS RESULTS 

Figure 1 shows the predicted dynamics of the antigen 
concentration in the case of infectious disease in the acute form 
in the locus of infection according to the model (4) - (5) with 
uneven initial distribution of antigens in the infected zone and 
different values of model intensity (parameter ε) of diffusion 
"redistribution". As in the previous case, we assume that the 
donor antibodies enter the organism at a constant rate 

( )( )u x,t const=  and are evenly distributed.  

 

Figure 1.  Dynamics of antigen concentration in the infection locus according 

to model (4) - (5) in the conditions of acute form of infectious disease at 

different intensity of diffusion effect 

 

Figure 2.  Spatio-temporal dynamics of antigen concentration on condition 

that ( )
20 ,0 (1 ( ) )V x x = + − , ( )u x,t const= under a) 0 = ;  b) 0 075. =  

These results show decrease of the maximum antigens 
concentration in the infection locus with increasing the diffusion 
"redistribution" intensity. Note that the dynamics of other active 
factors of the disease changes accordingly. Thus, considering the 
diffusion redistribution of active factors in the model predicts a 
less "acute" course of infectious disease, which is achieved by 
increasing the intensity of the introduction of donor antibodies 
in the traditional approach. 

Figure 2 presents model spatio-temporal changes in antigen 

concentrations ( )V x,t  with the development of infectious 

disease in the chronic form in cases when the small-scale 
diffusion effects is absent (Fig. 2, a)) and present (Fig. 2, b)). In 
both cases, it is assumed that we have the uneven initial 

distribution of antigen concentration ( ) ( )00V x, V x=  (a separate 

source of infection is available), and the introduction of donor 

antibodies ( )u x,t  is evenly distributed with a constant 

intensity. These results illustrate the simulated decrease of 
general "severity" in the course of disease, as well as the value 
of the maximum concentration of antigens in the locus of 
infection due to their diffusion redistribution.  

IV. CONCLUSIONS 

We present the approach for taking into account the 
influence of small-scale diffusion perturbations on the 
development of the infectious disease, based on the modification 
of the mathematical model of the immunotherapy influence on 
the immune response dynamics. The model problem with time-
delay solution is reduced to a sequence of solutions of problems 
without time-delay that are presented in the form of asymptotic 
series as perturbations of the solutions of the corresponding 
degenerate problems. 

In this paper, the presented results of numerical modelling 
illustrate the decrease in the value of the maximum antigen 
concentration in the locus of infection due to their diffusion 
"redistribution". We showed that the diffusion "redistribution" 
effect over time provides a decrease below the critical level of 
antigens concentration in the locus of infection. Therefore, their 
further neutralization will require fewer donor antibodies to be 
introduced into the organism. Thus, under this model, the 
"severity" of the infectious disease will decrease and the 
effectiveness of immunotherapy will increase. In this case, the 
sequence of solutions of the corresponding singularly perturbed 
problems (that determine a step-by-step (for delay  ) spatio-

temporal prediction of the distribution of antigens, antibodies, 
plasma cells and measure of contagion) will lead to some stable 
(in particular, asymptotically stable) non-critical, less 
threatening stationary state. 

It is a promising approach to take into account this kind of 
spatially distributed diffusion effects in the research of the 
process in terms of infectious disease immunotherapy based on 
more detailed models, in particular, models by Marchuk-Petrov 
[5]. 
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