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Abstract— This paper proposes an approach for the computer 

simulation of complex physical problem of contaminant migration 

through unsaturated catalytic porous media to the filter-trap. The 

corresponding mathematical model in the two-dimensional 

nonlinear case is presented. The model includes detailed 

considerations of the moisture transfer of saline solutions under 

the generalized Darcy’s and Cluta’s laws in different subregions 

of soil. The numerical solution of the boundary value problem was 

found by the finite difference method and proposed the algorithm 

for computer implementation. The proposed algorithm may be 

used for creating software with effective risk assessment strategies 

and predicting the cleaning and further useful use of the soil 

massifs. 
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I. INTRODUCTION  

Contaminant sources occur in soil, from which the 

chemicals then migrate to air, surface water, and groundwater 

[1]. Predicting the movement of contaminants through porous 

media requires addressing the fate and transport processes that 

predominate in each sub medium and integrating the 

interactions between the media. This is a quite complicated 

problem [2–6].  

In previous works, we investigated similar physical 

problems for saturated media [7, 8]. Therefore, in the zone of 

suspended water different processes became commensurate 

(e.g. the convective term and diffusion are almost identical due 

to the low velocity of moisture transfer). This fact opens a 

widespread use of colloid adsorbents in purification processes 

[9, 10]. Thus, the next mathematical model is presented for the 

first time and take into account a wide range of factors. 

II. FORMULATION OF THE PROBLEM 

The filter-trap located at a depth CD of the soil. The pore 
spaces between the soil grain particles are partially filled with 
water and partially with air (zone of suspended water). There 
are dozens of colloid adsorbents with radius R (micro or 
nanoparticles) in the layer of soil. Therefore, they may be used 
in for cleaning purposes as well. There is a piezometric pressure 

on the upper and filter-trap surfaces 
1H  and 

2H  
1 2( ),H H  

respectively. The contaminants concentrations at the initial time 

0t = : 0

1 ( , )C x y  (for a saline solution in soil pore network, 

>300 μm [11]), 0

2 ( , )C x y  (soil surfaces hold water in soils and 

prevent rapid movement in smaller pores, thus the contaminant 

are held on the surface of the ground skeleton), 0

3 ( , )C x y  (for 

contaminant located in the soil skeleton, the importance of such 

factor was presented in [12]), and 0 ( , , )Q x y r (for contaminant 

inside microparticles with radius R [13]) are known. 

 

Figure 1. The process of contaminant migration in unsaturated two-

dimensional catalytic porous media to the filter-trap 
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The soil concentrations 1

1 ( )C t , 1

2 ( )C t  and 1

3 ( )C t  on the 

upper surface and 2

1 ( )C t , 2

2 ( )C t , 2

3 ( )C t  for the filter-traps are 

also known.  

It is necessary to find out the 
1( , , )c x y t , 

2 ( , , )c x y t , 

3 ( , , )c x y t  and ( , , , )q x y r t  concentrations distribution over the 

soil.  

III. MATHEMATICAL MODEL 

Due to the symmetry of the filtration picture a fragment of 

AB1B2BCD filtration area is considered. Therefore, the 

boundary value problem of the contaminant transport in a 

porous medium in a two-dimensional nonlinear case was solved 

using a mathematical model with the following equations [7, 

14, 15]: 
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where 
1( , , )c x y t , 

1D – concentration and convective diffusion 

coefficient of contaminant in filtration flow; 
2 ( , , )c x y t , 

2D  – 

concentration and molecular diffusion coefficient of 

contaminant in water connected with soil skeleton; 3 ( , , )c x y t , 

3D – concentration and diffusion coefficient of contaminant in 

soil skeleton; ( , , , ),q x y r t  
0D – concentration and diffusion 

coefficient of contaminant in particles with radius R , which in 

soil skeleton; ,fk    – adsorption isotherm coefficients; 0  – 

coefficient of micro- or nanoparticle mass transfer influence on 

mass transfer near the ground skeleton;  ,x y =   – filtration 

velocity; K – moisture expansion coefficient; 1 , 2 , 3  – 

mass transfer coefficients; ( , )x y   –coordinates; ,il 1, 3i =  

– differential operators for boundary conditions; t – time, 

10 t t  , r  - radius (radial variable) 0 r R  . 

The equations above describe the following transport 

mechanisms of contaminant with concentration: (1) 1c  in a 

convectively mobile pore solution; (2) 2c  in the water bound 

with the soil skeleton tacking into account the intra-particle 

diffusion; (3) 3c  in the soil skeleton. Equation (4) describes 

moisture transfer; (5) the intra-particle transport mechanisms of 
contaminant with concentration q  [13, 16]; (6) the generalized 

equation of the Darcy-Cluta law in the two-dimensional case 
for moisture transfer of the salt solutions [17]; (7) the 
adsorption isotherm; (8) boundary conditions for piezometric 
head h(x,t); (9)-(12) boundary conditions for concentrations 

1( , )c x t , 2 ( , )c x t  and 3 ( , )c x t ; (13) boundary conditions for 

intra-particle concentrations q(x,y,r). 

Transfer of contaminant dissolved in water (saline solution) 
by filtration flow occurs under the influence of the pressure 
gradients and the concentration of salts. The moisture and mass 
transfer of saline solutions occurs under the generalized Darcy’s 
and Cluta’s laws. 

The boundary value problem (1)-(13) is set correctly (or 
correctly posed), because the conditions of existence and 
uniqueness of its solution are fulfilled [18]. 

IV. NUMERICAL SOLUTION OF BOUNDARY VALUE 

PROBLEM  

The computational mesh ωh11,h12,h2,τ, was build for finite-

difference approximation with steps h11, h12, h2 and τ by Ox-

axis, Oy-axis, Or-axis and Ot-axis for x, y, r, t variables 

respectively [19–21] 



Modeling, control and information technologies – 2020 

1 2

11 12 2

1 11 2 12 2

1 11 2 12 2 3

11 11 1 12 12 2 2 2 3

, , , ,

0, , 0, , 0, , 0, ,

, , , ,

i i j k

h h h

x i h y i h r jh t k

i n i n j n k n

h n l h n l h n R n T



= = = =  
  

 = = = = = 
 = = =  =
  

 

where 
11n , 

12n , 
2n , 

3n  – steps count. 

Let us show the solution algorithm on the example of an 

equation (2). According to a locally one-dimensional method, 

we represent the differential equation (2) as a system of two 

one-dimensional equations with locally one-dimensional 

method [14]: 
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where ( , )x y  , (0, )r R , 0t  . 

Finite-difference analogues of equations (14), (15) are 
tacking the following form: 

 

1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2

2 2 2

( 0,5) ( ) ( 0,5) ( 0,5) ( 0,5)

2, , 2, , 2, 1, 2, , 2, 1,

2 2

11

( ) ( 0,5) ( 0,5)

1 1, , 2 2, , 3 3, ,

( 0,5) ( 0,5) ( 0,5)

1 2

2

2

2 2 2

3 1
2

2 2

2

k k k k k

i i i i і і і і і і

k k k

i i i i i i

k k k

n n n

c c c c c
D

h

c c c

q q q

h

+ + + +

+ −

+ +

+ + +

− −

− − +
= +



  
+ − + −

 
− + 

−  
  
 

,

    (16) 

 

1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2

2 2 2

( 1) ( 0,5) ( 1) ( 1) ( 1)

2, , 2, , 2, , 1 2, , 2, , 1

2 2

12

( 0,5) ( 1) ( 1)

1 1, , 2 2, , 3 3, ,

( 1) ( 1) ( 1)

1 2

2

2

2 2 2

3 1
2

2 2 ,
2

k k k k k

i i i i і і і і і і

k k k

i i i i i i

k k k

n n n

c c c c c
D

h

c c c

q q q

h

+ + + + +

+ −

+ + +

+ + +

− −

− − +
= +



  
− + −

 
− + 

−  
  
 

    (17) 

1 111, 1і n= − , 2 121, 1і n= − , 30,k n= . 

To find the solution (16) by the Thomas method we present 
it in following general way: 
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The stability conditions of the Thomas method are fulfilled - 

1 1 1

2 2 2

i i ic a b + . Therefore, we may find the value of 

concentration 
2 ( , , )c x y t at the each time step ( 0.5)k + : 
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Correspondingly we may find the solution for (17): 
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The concentration value 2 ( , , )c x y t  at the time steps ( 1)k +  

is calculated using the next ratio:
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Let us write the next finite-difference equations for the initial 

condition as well as for boundary condition for 2 ( , , )c x y t : 

1 2

(0) 0

2, , 2 1 11 2 12( , ),i ic C i h i h=  
1 12

( ) 1

2, , 2 1 11( , )k
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Thus, the all necessary mathematical manipulations were 
performed for programming language implementation of the 

Thomas algorithm for 
2 ( , , )c x y t . 

Similarly, we split the sub-boundary-value problems (1), (3)
, (4), (5) and (6) with corresponding boundary and initial 
conditions (7)-(12) into the systems of one-dimensional 
equations. Mathematical conversions for similar one-
dimensional boundary-value problems are described in previous 
works [7, 22]. In computation algorithm we need to find out the 

piezometric head distribution ,h(x y,t)  first, then the Darcy-

Clute moisture velocity ( )x, y,t  and finally the distribution of 

concentrations 
1( , )c x t , 

2 ( , )c x t , 
3 ( , )c x t  and ( , , )q x r t . Each 

Thomas algorithm calculations we perform at half time step 

( 0.5)k +  at Ox-axis and then at time step ( 1)k +  at Oy-axis. 

This approach allows us to solve the entire solution in the two-
dimensional case and implement the corresponding software 
algorithm. 

V. CONCLUSIONS  

Since the mathematical modelling using colloidal adsorbents to 

the purification processes is new, the importance of new 

mathematical models become obvious. The statement and the 

mathematical modelling of the new corresponding two-

dimensional problem of contaminant migration in unsaturated 

porous media was formulated. The numerical solution of the 

boundary value problem was found by the finite difference 

method using locally one-dimensional Samarsky's method and 

monotonic difference schemes and a computation algorithm is 

proposed as well. The results might be used to build effective risk 

assessment strategies for cleaning and further useful use of the soil 

massifs. 
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