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Abstract — Vessel control in a storm is the most
difficult stage in the vessel voyage, as it requires quick
decisions to be made in difficult conditions. Practical
experience shows that the deterioration of the working
conditions of the crew is usually associated with increase
in the number of control mistakes [1]. The article
examines the possibility of automatic control of a vessel in
a stormy conditions by automatic calculation in the on-
board controller of the vessel optimal safe speed and
course during a storm. This allowed to significantly
increase the accuracy of calculations, to exclude the
human factor, to reduce the depletion of the crew, to
increase the reliability of the vessel control in a storm. The
efficiency and effectiveness of the method, algorithmic and
software were tested on Imitation Modeling Stand in a
closed loop with mathematical vessel models of the
navigation simulator Navi Trainer 5000.

Keywords — Automatic control; Closed loop systems;
Control system synthesis; Motion control; Steering
systems.

1. INTRODUCTION

In ancient times and the Middle Ages, vessel control
in a storm was performed in such a way as to coordinate
their actions with the actions of the element and not to
contradict it. With the advent of the sail, active vessel
control methods emerged.

The seaworthiness of modern ships, their speed and
size have changed a lot. The range of their possible
applications has also expanded. For example, in articles
[2-9], recommendations for control a modern ship in a
storm are considered.

To facilitate the task of a vessel control in storm, a
number of scientists have proposed special diagrams for
choosing the course and speed in storm conditions.

The most widespread is the universal diagram of the
Yu.V. Remez, which allows to determine unfavorable
combinations of velocity and course angles of waves
(resonant zones) for any vessel and any wavelength A4
and choose a safe speed and course of the vessel outside
the resonance zone.
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The use of automatic control systems of the vessel
allows to significantly reduce the impact of the human
factor and increase the safety of navigation [19-35],
especially in difficult sailing conditions.

This paper proposes an automatic storm system,
which does not have disadvantages of manual control,
namely: the automatic storm system uses specialized
equipment to measure the parameters of the wave;
measurement of vessel motion parameters and excitation
parameters, as well as their processing and formation of
controls is automatic and constant, which allows to
constantly monitor any changes in vessel motion and
wave parameters; software always calculates the correct
result and can work in any stormy conditions; moreover,
unlike manual storming, the problem can be solved
optimally. Therefore, the development of the vessel
automatic storm system is an urgent scientific and
technical task.

It is required to develop an automatic control system
that would ensure safe sailing in stormy conditions
without operator intervention [36—48].

II. RESEARCH RESULTS

Pitching and rolling of the vessel are excited by
forced oscillations of waves. Conditional period of
waves 7(n) depends on the wave length A, vessel
speed V' (n) and the course angle of the wave ¢g(n) —

the angle between the waves direction and the vessel
diametrical plane
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Particularly dangerous is the case of resonant
oscillation, in which the period of free oscillations of the
vessel coincides with the period of forced oscillations or
close to it.
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Inequalities (2), (3) determine the resonance zone Q
for the rolling and pitching respectively. The task
control in the storm is to create such conditions for the
movement of the vessel, under which inequalities (2)—
(3) are not fulfilled.

To determine the resonance zone £ , from
inequalities (2), (3), taking into account (1), we find
1 A
e(n)cosq(n) > L4222 -231Y1), @)
V max Ty
1 A
e(n)cosq(n) < (2,64=-2311), (5
max TB
1 A
e(mcosq(n) = — (1427~ 2,31/2)
max L , (6)
1 A
e(n)cosq(n) < —— (2,642 -2314J2)
Vmax TL (7)
Fig. 1 shows the range of the vessel reduced speed
e= v <1, the resonant zone (shaded) and non-
resonant zones ,,€Q, for wave length 4 =230m .
Define the control quality function as follows
2
0 =(e(n)cosq(n)—e(n—1)cosq(n—-1)) + )
+ (e(n)sing(n)—e(n—1)sing(n— 1))2 ,
where e(n) = Vin) is the safe reduce speed in a storm
V(n-1
(p4), e(n—1)= 1) is the actual reduce speed in a

max
storm (p.1), g(n),q(n—1) is the safe wave angle and
actual wave angle, respectively.

Thus, the safe speed and course calculation unit
determines the optimal pair of parameters {e(n), g(n)}
by minimizing the control quality function (4), in the
presence of constraints (1H)-(3) and
e(n) pin Se(n) < e(n)fflax. Since the quality function (4)
is smooth, to solve this optimization problem with linear
and nonlinear constraints, we used the standard gradient

optimization procedure fmincon of the MATLAB
Optimization Toolbox library

y=fmincon(@myfun,y0,A,b,Aeq,beq,lb,ub,@mycon)
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Figure. 2. The range of the vessel reduced speed, resonant (shaded)
and non-resonant £2,,€2, zones

The operability and efficiency of the method,
algorithmic and software are tested at the Imitation
Modeling Stand [49, 50].

Fig. 2 shows graphs of changes in roll angle, trim
angle, speed and course of the vessel with automatic
control of the vessel Ro-Ro passenger ferry 13 in a

storm. Initial course of the vessel is K(0) =75, initial
speed is V' (0) =18,5kn. , initial sea disturbance is 2

points. The vessel, moving the course K(n)=75",
accelerates to speed V(n)=19kn. , after which the

simulator is set to sea disturbance 11 points. As can be
seen from the graphs, during the storm the speed of the

vessel begins to decrease to V' (n) =7 kn. At the same
time, the automatic storm system begins to change
course from K(n—1)=75" to safe b to exit the

resonance zone. In Fig. 1 this corresponds to the
movement from p. 1 to p. 4.

III. CONCLUSIONS

The scientific novelty of the obtained results is that for
the first time theoretically substantiated design features
of the original system of automatic control of the vessel
in a storm, which consist in constant, with the onboard
controller cycle, automatic measurement of vessel and
wave motion parameters, automatic calculation outside
resonant zones, taking into account resonant zone
boundaries, minimum vessel speed and maximum vessel
speed in a storm, automatic selection of safe optimal
motion parameters from outside resonant zones
according to the specified criterion of optimality,
automatic maintenance of safe optimum parameters of
movement in a storm, and provide fundamentally new
technical characteristics: the ability to automatically
control the vessel in a storm, reduce depletion of the
vessel's crew when sailing in difficult conditions,
increase the accuracy and reliability of the vessel control
in a storm, which determine its advantages over known
solutions.
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Figure. 2. Automatic control of the vessel Ro-Ro passenger ferry 13 in a storm

The practical value of the obtained results is that the
developed method and algorithms are implemented in
the software of the vessel automatic storm system and
investigated by mathematical modeling on the imitation
modeling stand in a closed loop with vessel
mathematical models for different types of wvessel,
sailing areas and meteorological conditions.
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