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Abstract — Modeling of dynamic processes of diffusion
and filtration of liquids in porous media are discussed.
The media are formed by a large number of blocks with
low permeability, and separated by a connected system of
faults with high permeability. The modeling is based on
solving initial boundary value problems for parabolic
equations of diffusion and filtration in porous media. The
structure of the media leads to the dependence of the
equations on a small parameter. Assertions on the
solvability and regularity of such problems and the
corresponding homogenized convolution problems are
considered. The statements are actual for the numerical
solution of this problem with guaranteed accuracy that is
necessary to model the considered processes.
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I. MODELING OF PROCESSES IN POROUS MEDIA

Modeling of dynamic processes of diffusion and
filtration of liquids in porous media is actual when
planning the use of underground resources, development
of methods for preventing technogenic contamination of
groundwater and the search for ways to purify such
waters from contamination. Research of such processes
engineering methods of observation are expensive and
practically impossible, due to the need to install a large
number of sensors on large territories and different
depths to study the dynamics of fluid movement in a
real porous environment. So the simulation is the only
one the possibility of forecasting and optimization of
methods for rational water extraction, purification and
prevention of groundwater contamination.

In order to simulate diffusion and filtration processes
in porous media, it is natural to first choose some model
of such a medium. Porous media with a periodic
structure are simulated most simply, since to describe
such media it is sufficient to determine only the
structure of the periodicity cell and then continue such a
cell in a periodic manner with suitable periods. Porous
periodic media formed by a large number of blocks with
low permeability, and separated by a connected system
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of faults with high permeability will consider. It is
natural to call such porous media weakly porous.

The homogenized equations for such weakly porous
media turned out to be convolution equations, which are
usually called dynamic problems with memory effects
according to [1]. Such homogenized equations for
equations depending on one or more small parameters
and periodic coefficients were investigated in [2, 3, 4].
Moreover, in these papers, homogenized initial
boundary value problems in convolutions were obtained,
the solutions of which approximate the solutions of the
original initial boundary value problem for weakly
porous media, and accuracy estimates of the
approximations and statements on the solvability of the
homogenized problems were proved. The results were
obtained under the assumption that the initial data are
regular enough and the initial conditions are
homogeneous. Without proving the accuracy estimates,
such problems in convolutions were first established in
[5] for hydrodynamic problems in porous media. Further
details on hydrodynamic problems and a suitable
bibliography can be found in [6].

Another approach to simulate diffusion and filtration
processes in porous media is presented, for example, in
[7], where statements on the two-scale convergence of
solutions to solutions of two-scale homogenized
problems are proved. Such two-scale problems depend
on two fast and slow variables and the type of such
equations is not clear. Also, the accuracy of the
approximations is not clear in this case. Much more
general homogenized problems were obtained in [8, 9].
However, such homogenized problems are also two-
scale and contain both fast and slow variables. Further
details on this approach and bibliography can also be
found in [7, 10]. In the problems considered here, such
variables are separated and the homogenized equations
in convolutions depend only on slow variables. The
same approach is also used, for example, in
contemporary articles on related topics [11, 12].
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The results of [2, 3, 4] were obtained under the
assumption that the initial data are regular enough and
the initial conditions are homogeneous. The solvability
of such homogenized problems in convolutions with
irregular initial data will be discussed here without
homogeneity conditions.

To investigate the solvability of the homogenized
problems with memory, we will use the Laplace
transform method developed in [13] to study parabolic
problems of general type. This method is briefly
described in the third section. The formulation of
diffusion and filtration problems for weakly porous
media will be presented in the next section. The results
presented here are partially announced in [14].

II. PERIODIC POROUS MEDIA

In order to determine the periodic porous media, we
will consider a partition of the entire space R’ into two
open sets E; and E; separated by boundary 0E,. Thus,
R’ = Ef UE{ UOES, where & denotes some parameter.
It is assumed that the sets are & -periodic (with a period
¢ in each of the independent variables x,,x,,x; ) and
E; is connected set with the locally Lipschitz boundary
OEf. For ¢=1, the sets E, and E, are completely
determined by the sets ¥, =E NY and ¥, =E,NY
with the boundary 6Y;, where ¥ = (0,1)’ denotes a cell
of periodicity. It is assumed that the sets ¥, and Y, have
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positive Lebesgue measures in R°.

Let us fix an open domain Q c R*. Then, for some
sufficiently small parameter ¢, the sets E and E;
naturally define periodic porous media by the equalities

Q;=E;NQ and Q=E’ NnQ.

We will use the permeability tensor for these media
given through the following definition

D =¢’D, in Q)  D°=D in Q, (1)

where the constant matrices D, and D, are symmetric

and elliptic. The components of these matrices
characterize the permeability properties of the media
under consideration. Using these definitions, we define a
function u = u(¢,x) as a solution to the following initial

boundary value problem

u/-divD*(Vu+g)=f in Qx(0,), 2)

ul_o=u,in Q, u=0on 0Qx(0,0),

which depends on the small parameter ¢ according to
(1) and g € I’ (0,00, L’ (Q)*), f € L*(0,00;H ' (Q)), and
u, € LI’(Q) are given functions that simulate external

influences. Here and below, function spaces are used,
the definitions of which are given, for example, in [1].

Therefore, for small ¢, the equation of problem (2)
degenerates on the set that simulates the blocks with
very low penetration. This dependence on a small
parameter leads to the homogenized problem in
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convolutions, the solutions of which approximate the
solution of problem (2) for small ¢ in accordance with
[2, 4]. For a precise formulation of such homogenized
problems, additional definitions are needed.

Let the function g = g(¢, ) be a 1-periodic solution
of the initial boundary value problem:

q,- div}_(DOV",q)=O in  Y,x(0,00), 3)

ql-=1inY,, qg=0 on 0Y,x(0,0).

It is known [1] that a suitable solution to this
problem exists and the following function

r@=17, '], 4/, )y, )
is well defined as an element of the space L'(0,) in
accordance with [4]. Here |Y,| denotes the Lebesgue
measure of the set Y. Also, following [2, 4], one can
determine the constant real matrix D, which
characterizes the homogenized (averaged) permeability
for the considered medium €.

In such definitions and (4), the homogenized
(averaged) problem for (2) is convolution problem for
the function v =v(¢,x) of the following form

vj=r*(V))=divD(Vv+ g)=f—r* f in Qx(0,), (5)

Vi]_y=u, in Q, v=0on 0Qx(0,0),

where * denotes the convolution operator by ¢, for
example, we have

r* )= [ir(e- )0 (2, 2)dr.

For fixed &, a unique solution to problem (2) exists,
for example, according to [1]. For sufficiently smooth
data and u, =0, a unique solution to problem (5) exists
in accordance with [4]. Moreover, the solution of
problem (5) approximates the solution of problem (2) in
the appropriate sense [2, 4] for small ¢. More precisely,
the following statement is fulfilled for the solutions.

Theorem 1. Assume that geC;([0,0]xQ)’,
feCl([0,0]xQ), and u,=0. Let T be fixed and
u=u(t,x) be a solution to (2) and v=v(t,x) be a
solution to (5). Then

lu—v— q.*f+q,* () ||z“’([fLT];LZ(Q))S ce,

|[u—=v]] < Ce,

2
CO([0.73:L2 ()

where q, =q.(t,x/¢) and the constant C does not
depend on the small parameter &.

Thus, instead of solving problem (2), it is possible to
solve problem (5) with a guaranteed accuracy.
Naturally, the numerical solution of problem (2) for very
small & is much more complicated than the numerical
solution of problem (5), since a very fine mesh is
required, taking into account the shape of small blocks
and faults for the media. The estimates of Theorem 1 are
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also valid for irregular initial data, for example, through
approximation by smooth data. But, the exact
formulation is much more complicated.

In addition, according to the estimates of Theorem 1,
the solution to the original problem (2) is strongly
oscillating on blocks, which should also be displayed in
the numerical solution of this problem. It is these
oscillations that lead to the appearance of convolutions
in the homogenized problem, which is also commonly
called the appearance of memory in porous media.

Thus, the presence of weakly porous blocks in the
domain Q is modeled by the appearance of a memory
in density (coefficient at the time derivative) in the
homogenized medium. Here we will investigate the
solvability and regularity for problem (5) with common
initial data, since it is necessary for the numerical
solution of this problem with guaranteed accuracy.

The main result on the solvability and regularity for
the problem is the following statement.

Theorem 2. For every gel’(0,00,'(Q)),
fel’(0,0,H(Q)), and u, € L’(Q) there exists the
unique solution v e L’ (0,00; H} (Q)) to problem (5) and

there is a positive constant C, such that

19 gy * 17

S C” g ||L2(0,00;L2(Q)3) +C|| f HLZ(O,oc;H"(Q)) +C|| uO ||

12 (0,00,H~ (Q))
(@)
and v e C°([0,T];L*(Q)) for fixed positive T.

III. LAPLACE TRANSFORM AND A PRIORI ESTIMATES

We define the space L (0,00; L’ (Q)) for a fixed real o
2 (0,00, (Q)), for

12 002 @) e ul
finite. The last equality defines a norm in the space
L (0,00;L*(QY)), with respect to which this space is
complete in accordance with [13]. Let the space
Ew(LZ(Q)) be the set of functions W =W (o) with

values in L’(QQ), continuous and holomorphic in the

as the function set from the space L

which the quantity || u|| 2om is

half-plane C_ ={oceC:0 =0, +io,,0,>n}, for

which the quantity

WU oo™ [ 1U@+i0) IE, , do

£ @) I
is finite. The equality defines the norm in E_ (L*(Q)).
It is known [13] that the Laplace transform
w(t)= [ e " wit)dt =W (o)
is a bijective bicontinuous map from L (0,00; L*(Q2))

into E_ (L (Q)) for a fixed real .

X A ~ 0
We will denote V' =v, R=r, O=¢q, G=g, and

U
F = f. Applying the Laplace transform to (5), we get
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c(1=RW —divD(VV)=F in Q, Vl|u,=0, (6)

where F=divDG+F(1-R)+u,(1-R), since the
Laplace transform maps the convolution operator into

pointwise multiplication.

For fixed o € C, problem (6) is a boundary value
problem for an elliptic equation with complex
coefficients in the lower order terms. It is known [13],
that the problem is solvable for all o eC except,
perhaps, a discrete set in C. Here, in order to explain
the solvability of problem (5), it will be enough to
separate from this set using a priori estimates with
constants independent of o € C,.

In order to do this, we multiply equation (6) by v
and integrate over Q. Then, we get

o(l- R)IQ |V P dx+ jQ(DVV,vV) dx =IQFde.

Similarly, multiplying the equation conjugate to (6) by
V' and integrating over €2, we have

ol —E)jg |V [? dx+ jQ(DvV,VV)dx :jﬂﬁde.

Consequently, using the summation and the ellipticity of
the homogenized matrix D, we conclude that

(0 +Re(-oR) |V IF; , +o IV [}, < Re [ FVax,

where oo denotes the ellipticity constant of matrix D.

It is possible to check that the function Re(—coR(o))
is non-negative and the function R(c) is bounded for
o € C,. Thus, it follows from the last inequality that

I,

Hy(©Q)

oV ”25<m§ Re| FVdx<||F 17

Therefore, using the definition of F from (6), we
get for solution (6) the following a priori estimate

IV 1y o, SC g N2 FCIS M g, +C e

H) (@) 2 (Q) 17l (@) ' (Q)

with a constant C, which is independent of o € C,,.

It follows from the obtained inequality that there
exists the unique solution ¥ € Hy(Q) to problem (6) for
every ce€C,. The

properties. Namely, following [4], one can prove that
the solution is continuous and holomorphic on C,.

solution has some additional

Indeed, let us check, for example, the continuity of
this solution. To do this, fix ve C; and assume that

G — v. For simplicity, we introduce the notation
S(o)=0(1-R(0)).
Then problems (6) at points ¢ and v have the form

V(o) =0,
V(0)]n=0

—divD(VV(0))+ S(o)V (o) =F(o),
—divD(VV (v))+ S0V (v) =F(v),
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Using that S(v) =S(o)+(S(v)—-S(o)) and subtraction,

we get for W (o) =V(o)—-V(v) the problem

—divD(VW (o))+ S(e)W (o) =F(c)-F(v)+
+(S(v)-S(e)WV(v), W(0o)|.,=0.

Thus, repeating the proof of (7), we conclude that
11,y CIF@-F@)|, ,, +

Hy (9

1S -S@)[CIV ), >0

)

as ¢ —» v, since F(o)and S(o) are continuous, which

follows from the definitions and known properties of
solutions to equation (3), for example, according to [1].

Therefore, using the bijective bicontinuous map
from E,(H(Q)) into L (0,00; H,(Q)), we can derive
the estimate of Theorem 2 from equality (7). Thus, using

the well-known embedding theorem given, for example,
in [1], we conclude for solution to problem (5) that the

inclusion v e C°([0,T];L*(Q)) is valid.

IV. CONCLUSION

Thus, initial-boundary value problems for non-
stationary equations of diffusion and filtration in weakly
porous media were discussed. Assertions on the
solvability and regularity of such problems and the
corresponding homogenized convolution problems with
memory have been submitted. These statements are
presented for general initial data and inhomogeneous
initial conditions and generalize classical results on the
solvability of initial boundary value problems for the
heat equation. The proofs use the methods of a priori
estimates and the well-known Agranovich-Vishik
method based on the Laplace transform and developed
to study parabolic problems of general type. The
statements are necessary for the numerical solution of
this problem with guaranteed accuracy.
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