¢

MCIT

Modeling, control &
information technologies

Development and investigation of adaptive
micro-service architecture for messaging
software systems

Gamzayev Rustam

V.N. Karazin Kharkiv National University
Kharkiv, Ukraine
Rustam.Gamzayev(@karazin.ua

Abstract — Messaging Software systems (MSS) are
one of the most popular tools used by huge amount of
people. They could be used for personal communication
and for business purposes. Building an own MSS system
requires analysis of the quality attributes and considering
adaptation to the changing environment. In this paper an
overview of existing MSS architecture was done. Data
model was developed to support historical and real time
data storage and processing. An own approach to build
Adaptive Microservice MSS based on the messaging
middleware and NoSQL database was proposed.

Keywords microserivce;
architecture; software.

— messaging; system;

I. INTRODUCTION

Development of the Messaging Software system
(MSS) is not trivial and requires considering complex
approaches in the modern scalable architecture design.
With the invention of the World Wide Web, humanity
has taken a big step in information technology and in
social relationship. Using it, each person can look for
information that meets his needs, to communicate, using
smart devices and IoT. After an amount of devices
connected to internet have increased, and collaboration
relationships of different software systems become more
complicated it was necessary to modify approaches and
methods to develop software systems.

There are presented a lot of different approaches that
are used in building of architectures and design. Early
development started with single big applications that
were easy to maintain at the beginning but after a time
when it was becoming bigger and bigger it was obvious
that once it would be impossible to manage this big
chunk. In a nutshell, it was a monolithic architecture.

Building monolithic applications can be very
expensive and hard to support. A big application that
contains the whole logic is also hard to scale. For
example, if this type of an application can be deployed
in 10 and more minutes, it is hard to imagine how fast
and safe can the application be restored in the case of
unexpected issues [1]. Though it can be really fast to
develop at the beginning as you don’t think about most
of the issues but it is not a good solution for the future if

46

https://doi.org/10.31713/MCIT.2021.13

Shkoda Bohdan

V.N. Karazin Kharkiv National University
Kharkiv, Ukraine

xal1867771@student.karazin.ua

we talking about the development of messaging systems
that process more and more data from time to time.

When developing MSS we need to consider the
following parameters [2]:

- reusable;

- lightweight;
- easy to scale;
- independent.

One of possible approaches for software
development that will meet such quality attributes is a
microservice architecture. Microservice architecture is
an architectural style which structures a system as small,
loosely coupled services. Simply, we can imagine this
architecture as a decomposed monolith. Each of those
services have a single responsibility for specific domain
models. It allows us to deliver mostly each part
independently. Moreover, it gives an opportunity to
build scalable high load systems which are the main
aspects of messaging applications. But we need to
consider and reimagine much more that we could omit
earlier. After some time this architecture became one of
the most popular. Though it is used in the web sphere
mostly it is hard to find an application that does not use
this approach nowadays. There are a lot of studies but
the one that is done in [1] describes microservice
architecture usage in cloud native systems as they are
full of distributed computing. From it we can see that
after some time microservice architecture was started to
be used in different processing models and it will be
used for a very long time for sure.

The purpose of the work is to analyze, study high-
load architecture, existing solutions, practices,
approaches and development using a highly loaded
architecture with micro-service solutions to maintain
and ensure the security of a large amount of data, not
having a large amount of hardware resources.

II. RELATED WORK

Though microservices mostly appeared in 2014,
since that time there were published an enormous

Modeling, control and information technologies — 2021

number of papers and this number extremely goes up
even now.

In [3] was conducted a research regarding
architectural models and technologies and focused on
common problems, pitfalls and main algorithms what
should be followed in order to design and develop a
system that using a microservice architecture.

Comparing to the monolith architecture, security
layer is harder to implement in the microservice
architecture. Having multiple services in the network
gives us multiple APIs and multiple attack points which
can be accessed in case of not very secure system. In [4]
was conducted a research regarding microservices
security. Attacks, processes and other things were
described which can make any microservice system
vulnerable. Also, a lot of approaches were presented on
how to organize the process of securing microservice
architecture.

Working with data can be also challenging. Having a
big model that is divided to each microservice and its
data source creates new ways on how to process, obtain
and aggregate data. In [5] a research described the ways
of managing data in microservice architecture.
Moreover, the architecture generates a new ways of data
communications using HTTP or asynchronous methods
of communication (by using RabbitMQ or Kafka).

III. ANALYSIS AND INVESTIGATION OF EXISTING
MESSAGING SYSTEMS DEVELOPMENT METHODS

Messaging software systems become very popular in
the last 10-15 years. One of those was ICQ. First ever
created prototypes didn’t have such a variety of
functions comparing to the modern solutions but still it
was very helpful.

Every day something new is developed. When smart
devices become an integral part of our community, a
society faced new problems which should be solved.
The marketplace is growing very fast and provides such
solutions from time to time. It’s hard to imagine a
messaging application without audio or video streaming
functionality nowadays though in the past we had a
possibility to exchange with messages containing
different types of information. For now, there are a lot of
prototypes that are made for specific environment. It can
be a business area’s solutions which were developed for
big companies or it can be open solutions that connect
people all around the world.

In this paper some of the most popular solutions
were analyzed to get the idea of how the messaging
service works under the hood to make a generic
approach and design on how to build MSS. Those were
Slack, Avito Messenger, Viber, WhatsUp, Discord.

Slack is an enterprise messenger written using a PHP
programming language and a MySQL database. The
algorithm of this messenger can be described by the
following steps:

1) A request is made to the server (authentication),
which returns a token for interaction. The session starts
for the user;

47

2) MySQL databases are searched. There are a lot of
them and they all contain information on chats and
users.

3) A server looks for the user’s shard and when it is
found a user will be able to interact with an application.

For a data transfer, Slack uses an analogue of a
websocket protocol that is developed by a Slack team.

The entire database of the application is divided into
many databases containing the same structure and
different data (sharding) — the principle of database
design, in which logically independent rows of the
database table are stored separately.

Because MySQL is used, the team was faced the
situation that when it was necessary to scale the system,
it became very complicated and expensive due to
sharding architecture. When a new node was added,
many other nodes stopped working properly, which
caused the system's performance to drop and had to be
refactored. Due to the closely related structure, the team
had to spend a lot of time reworking the architecture [6].

Avito Messenger is a messenger for users of the
website Avito — an online service for placing ads about
goods, real estate, work vacancies etc. and as well as
services from individuals and companies. Messenger
also uses sharding, but with a different NoSQL database
— MongoDB. A total of 8 replica sets are used, which
are independent, as well as shards by user ID. This
messenger allows to have non-group chats between only
two users. To store messages, 2 shards are used - for the
recipient and for the sender. The algorithm of sending
the message is next: firstly, the message is sent to the
service API component, which immediately writes it to
the sender's shard. The message then goes to the service-
db-store component and is stored for the recipient [7].

Next investigated messengers were Viber and
WhatsUp. Those are primarily mobile messengers but
can be also accessed from desktop clients. Viber and
WhatsUp messengers use local data storage. That is, if
the message was delivered to the recipient, it is not
stored on the server, but stored only on the recipient's
device. In the case of WhatsUp, if a message is not
delivered to the recipient, it is stored on the server for 30
days. Then, if it was not sent, it will be deleted from the
server and will not be received in the future. Viber does
not store messages on the server at all [8, 9].

And the last very popular messenger that was
investigated was Discord. Discord is a free messenger
with support for voice over IP (VoIP), video
conferencing. Mostly, it is developed for gaming
purposes such as streaming, recording etc. Initially, a
MongoDB database was used in an architecture.
Everything in Discord was specially stored in a single
replica network, and messages were stored in a
collection with a single composite index on channel id
and created at. Over time, the limit of 100 million
messages in the database was surpassed, and then
problems began to arise: long delays, big chunks of non-
managed data — etc. It was decided to move to
CassandraDB because:

Modeling, control and information technologies — 2021

1) the read / write ratio of the database is
approximately 50/50.

2) linear scalability (transferring data to another
shard after reaching the limit was not an option).

3) the ability to generate readings by criteria, such as
the last 30 days [10].

After the deep analysis of those prototypes it was
decided that the approach that was used in Discord met
all our requirements and it was used in the next part — a
design of the messaging system.

IV. DESIGN OF A MESSAGING SYSTEM

Messengers process a lot of messages in real time so
a correct and fast communication protocol is a must.
There are a lot of different protocols such as HTTP that
are used in the modern web. HTTP is an application
layer protocol for data transmitting that uses requests.
The basis of this protocol is a client-server technology,
where the server is a provider that expects requests from
clients, and clients are who send requests to the server
[11]. But having a lot of HTTP requests sent to a server
can make an overload and slow down the processing if
we try to send messages using this protocol. There
should be used a protocol that allows us to process data
asynchronously and without a need of waiting for the
response from the server if we talk about messaging
sending. Something that is similar to websocket can be
used as it allows to initiate a bidirectional connection
between a client and a server to process data. Though
there are a lot of modern solutions for real time
messages processing, it was decided to use a STOMP
streaming protocol that is built on top of websocket for
the messaging sending and an HTTP protocol for simple
requests such as user registration/login, information
editing etc.

STOMP is a real-time data transfer protocol that is
very similar to HTTP and runs on top of TCP and
websocket protocols using commands for real-time
connection and communication [12].

As those two protocols by default are not secure,
TLS will be used in order to not expose any data to the
real world and non-authorized users. An complex
encryption mechanism was not included as the main
purpose was to research design and performance sides

Because in a microservice architecture we can have
many independent services the main task is also to set
up communication between these services, as data or
business logic can be broken down between different
services. Typically, synchronous communication is used
through the HTTP protocol. This means that we will
wait for the result of the request to another micro-
service until we receive a response. If a service takes
some time to process a request, it can block the entire
system or individual services, which affects
performance.

In this case, very often use asynchronous principles
that allow you to give a specific task for processing to
the queue, and when the result of the task is ready, a
user will receive it. It was decided to use both
technologies to support asynchronous communication —
RabbitM(Q and Apache Kafka.

48

RabbitMQ was only used for the data protocol
because the STOMP protocol’s queues are slower than
RabbitMQ queues. It increased a message processing’s
performance a lot.

Apache Kafka was sed to interact between consumer
/ producer services. These two types are responsible for
the basic logic of chat, for example sending messages,
joining chats. Once the message has been sent from the
user interface and read from the RabbitMQ queue, it is
in the first stage - the processing stage. The service
checks whether the message can be sent to the chat
(whether the user can send the message to the chat,
whether he is connected to this chat etc.) and checks the
structure of the message. If everything that user entered
is correct, the message is written to the database tables
and sent to the Kafka queue. From this queue, the
message will be taken and sent to the main chat by the
consumer service.

Because the data in a storage appears quickly,
retrieving this data from tables for example from SQL
databases can become very slow. As said earlier, it was
decided to use a similar approach that is used by a
Discord team — using a Cassandra database.

Apache Cassandra is a distributed database
management system related to NoSQL types and is
designed to create highly scalable and reliable storages
of huge data sets. Because messengers require a huge
storage to save messages into, it is a must to have a right
way in order not to slow down a system as a number of
messages increases. With Cassandra, it is possible to
create a separate structure for storing messages of each
chat with the subsequent sectioning of this data by time
sections. This means that separate sections will be
created for each chat, in which messages for a specific
period and a chat will be stored. This specific time
period is determined by the year and month.

Additionally, for the application security it is
essential to have authentication and authorization
processes. Authentication and authorization processes
are used to prevent unauthorized access. Authentication
is the process of recognizing an individual.
Authorization is a process that allows you to give
permission to the client to perform certain actions.
Because developing an application security layer is very
complex from the beginning and time consuming, it was
decided to use already developed solution Keycloak to
organize these two processes.

Keycloak is a single sign-on server with the ability
to manage the status of a connected client. With its help,
it is also possible to organize the process of user
registration. It also allows you to configure special user
groups and grant them rights to use certain system
functionality.

And the last important part through which a user
interacts is a web interface. Also, the web application
must monitor states of chats. A Redux library allows to
manage states of web applications. And the main single
application page’s structure was developed using the
React.js library. A collection of ready-made graphic
components that were used were provided in the Ant
Design library.

Modeling, control and information technologies — 2021

If we combine everything together, we shall have a
similar architecture that is displayed on the figure 1.

Sends a resultto queue

|

WS over HTTPS (STOMP)
| RabbitMQ Queve,

Cassandra DB

Takes a message

hat Service (Produc.

HTTPS /WS
User Interface. API Galeway.
HTTPS l

e

Figure 1. Messaging system architecture

Therefore, based on the done research, it was shown
that developing MSS is very hard and needs a deep
understanding. Using microservice architecture it was
shown that additional actions were needed to settle
drawbacks and make a system highly available. In order
to work with any amount of data a data storage model
was introduced and selected based on the done research
of the modern messaging solutions. Various
communication and security methods were used to
achieve the maximally optimized system.

REFERENCES

[1] Pachghare, Vinod. (2016). Microservices Architecture for Cloud
Computing. Journal of Information Technology and Sciences.
2.13.

[2] Bushong V., Abdelfattah A. S., Maruf A. A., Das D., Lehman
A., Jaroszewski E., Coffey M., Cerny T., Frajtak K., Tisnovsky
P., Bures M. On Microservice Analysis and Architecture
Evolution: A Systematic Mapping Study. Applied Sciences.
2021, 11(17):7856.

[3] Gamzaev R.O. Architectural models and technologies of
microservices in order to increase the adaptability of variability
in the development of lines of software products [sciences. pr.]:
materials of the XV international scientific-practical Internet
conference (m. Kiev, 11 chervnya 2021 r.). Kiev, 2021. P. 224—
233.

[4] Mateus-Coelho, Nuno. (2020). Security in Microservices
Architectures.

[5] Damyanov, Ivo. (2019). Data Aggregation in Microservice
Architecture. International Journal of Online and Biomedical
Engineering (iJOE). 15. 81. 10.3991/ijoe.v15i12.11095.

[6] Keith Adams. How Slack Works, Youtube, URL:
https://youtu.be/ WE9c9AZe-DY

[7] Alexandr Emelin. Avito Messanger Architecture // Youtube,
February 26, 2020. URL: https://youtu.be/4tIS58sQ7Mc

[8] Bringing modern storage to Viber’s users: Google, July 1, 2020.
URL: https://android-
developers.googleblog.com/2020/07/bringing-modern-storage-
to-vibers-users.html

[9] Privacy Notice: WhatsUp, 2021. URL:
https://www.whatsapp.com/legal/updates/privacy-
policy/?lang=en

[10] Stanislav Vishnevskiy. How Discord Stores Billions of
Messages: [Enextponnuii pecypc] Discord Blog, Jav 14, 2017.
URL: https://blog.discord.com/how-discord-stores-billions-of-
messages-7fabec7eedc’

[11] MDN contributors, “An overview of HTTP”, URL:
https://developer.mozilla.org/en-US/docs/ Web/HTTP/Overview

[12] Jeff ~ Mesnil, “STOMP Over WebSocket”, URL:
http://jmesnil.net/stomp-websocket/doc/

49

