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Abstract — A novel splitting algorithm for solving
operator inclusion with the sum of the maximal monotone
operator and the monotone Lipschitz continuous operator
in the Banach space is proposed and studied. The
proposed algorithm is an adaptive variant of the forward-
reflected-backward algorithm, where the rule used to
update the step size does not require knowledge of the
Lipschitz constant of the operator. For operator inclusions
in 2-uniformly convex and uniformly smooth Banach
space, the theorem on the weak convergence of the
method is proved.
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I. INTRODUCTION

Let £ be a real Banach space with its dual E~ .
Consider the next operator inclusion problem:

(1

where A:E —>2F is multivalued maximal monotone

operator, B:E — E  is monotone and Lipschitz
continuous operator. Many actual problems can be
written in the form of (1). Among them are variational
inequalities and optimization problems arising in the
field of optimal control, inverse problem theory,
machine learning, image processing, operations
research, and mathematical physics [1-3]. The most
well-known and popular method for solving monotone
operator inclusions (1) in Hilbert space is the forward-
backward algorithm (FBA) [1, 4, 5]

xn+1 :J/f (xn _/Ian)’

find xe E: 0€(A+B)x,

where J ! =(I+/1Al)_1 is the operator resolvent,

A:H -2, A>0 . Note that the FBA scheme
includes well-known gradient method and proximal
method as special case. For inverse strongly monotone
(cocoercive) operators B:H —>H FBA method is
weakly converging [1]. However, FBA may diverge for
Lipschitz continuous monotone operators B . The
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condition of the inverse strong monotonicity of the
operator B is a rather strong assumption. To weaken it,
Tseng [6] proposed the next modification of the FBA:

y,=J; (x, - 4Bx,),
xn+1 :yn_i(Byn _an)’
B:H—->H

operator

where

monotone and Lipschitz
continuous with L>0
Ae (O,L’l). Further development of this idea led to

constant and

the forward-reflected-backward algorithm [7]. Some
progress has been achieved recently in the study of
splitting algorithms for inclusions in Banach spaces [2,
8]. This is largely due to the wide involvement of
theoretical results and designs of the geometry of
Banach spaces [2, 9, 10]. Book [2] contains an
extensive material on this topic.

The current work proposes and studies a new
splitting algorithm for solving operator inclusion (1) in
Banach space. The algorithm is an adaptive variant of
the forward-reflected-backward algorithm, where the
step update rule does not require knowledge of Lipschitz
constant for operator B . The algorithm’s advantage is
only one computation at the iteration step of resolvent of
maximal monotone operator 4 and value of operator
B . The method weak convergence theorem is proved
for operator inclusions in 2-uniformly convex and
uniformly smooth Banach space.

II. ALGORIHM

Let us recall several concepts and facts of the
geometry of Banach spaces [2, 9-11], that are
necessary for the formulation and proof of the results.

, E" is

Let E be a real Banach space with norm H

the dual space for E . Let’s denote norm in E” as ‘ "

Let S, z{er: ”xHZI} . Banach space is called

strictly convex, if for all x,y €S, and x # y we have
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x+y
2

<1. The modulus of convexity of space E is

defined as (Ve € (0,2] )
5;(¢)=inf {1-

X+y
2

s x,yeS,, |

x—y”:g}.

A Banach space E is called uniformly convex, if
55(8)>0 for all 86(0,2]. Banach space E is
called 2-uniformly convex, if there exists such ¢ >0
that & (&)=ce’ for all £€(0,2]. Obviously, a 2-

uniformly convex space is uniformly convex. It is
known that the uniformly convex Banach space is
reflexive [9]. A Banach space E is called smooth if the
limit
x+w|—|x

el [ o

t—>0 t
exists for all x,yeS,. A Banach space E is called
uniformly smooth if the limit (2) exists uniformly over
X,y €S, . There is a duality between the convexity and
smoothness of the Banach space £ and its dual space
E"[26, 27]. 1t is known that Hilbert spaces and spaces
LP (1< p<2) are 2-uniformly convex and uniformly
smooth (spaces Lp smooth for

are uniformly

pE (l,oo)) [10]. Also recall [1, 11] that a multivalued

operator 4: E — 2" is called monotone if Vx,yeE

<u—v,x—y>2 0 VYuedx,veAy. A monotone

operator A:E —2" is called maximal monotone if

for any monotone operator B:E —2" we have that

['(4)<T(B) implies I'(4)=T(B), where T'(4)

is a graph of A4 [1]. It is known that if A E—25is
maximal monotone operator, B: E — E is Lipschitz

continuous monotone operator, then 4+ B is maximal
monotone operator. Let us also recall [1] that operator

A:E —>E" is called inverse strongly monotone

(cocoercive) if there exists such a number & >0 (the

constant of inverse strong monotonicity) that
2

<Ax—Ay,x—y>2 aHAx—Ay” . Inverse strongly

monotone operator is Lipschitz continuous, but not

every Lipschitz continuous operator is inverse strongly

monotone. Multivalued operator J:E —2" | which
acts as
)

is called normalized duality mapping. It is known [9,
10] that: if space E is smooth then operator J is

*
X

se={v B ()= =]

single-valued; if space FE is strongly convex then
operator J is injective and strongly monotone; if space
E is reflexive then operator J is surjective; if space
E is uniformly smooth then operator J is uniformly
continuous on bounded subsets of E . For a Hilbert
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space J =1 . Explicit form of operator J for Banach

spaces ¢, L,, and W' (pE(l,OO)) is provided in

p’
[9-11]. Let E be a reflexive, strictly convex and
smooth Banach space. The maximal monotonicity of

operator A:E —2F equivalent equality
R(J+ /1A) =FE" for all A>0. For maximal

is to

monotone operator A: E —> 2% and 2>0 resolvent
J!E - E is defined as follows

Jix=(J+24) Jx, x€E,
where J is normalized duality mapping from E to
E" .1t is known that
A"10=F(Jf)={er: fo:x} VA>0.

Let £ be a smooth Banach space. Let's consider the
functional introduced by Yakov Alber [11]

#(x2)= [l = 2(x)+ o xyek.
If the space E is strictly convex, then for x,y € £ we
have ¢(x,y)=0 S x=y.
Lemma 1 ([12, 13]). Let £ be a 2-uniformly
convex and smooth Banach space. Then for some x> 1
the next inequality holds:

1
¢(x,y)2;||x—y”2 Vx,yeE.
For Banach spaces £, L, and W" (1< p<2) we

[14]. And for a Hilbert space

have u= %

inequality for Lemma 3 becomes identity.

Let £ be a 2-uniformly convex and uniformly
smooth Banach space. Let A be a multivalued operator
acting from E into 2F , and B an operator acting
from E into E . Consider the operator inclusion
problem (1) and Assume that the following conditions
are satisfied: A:E—>2F is a maximal monotone
operator; B:E — E* is a monotone and Lipschitz
continuous operator with Lipschitz constant L >0 ; set
(A + B)71 0 is not empty. Operator inclusion (1) can be
formulated as the problem of finding a fixed point:

find xe E: x=J; oJ ' (Jx—ABx), 3)
where A >0 . Formulation (3) is useful because it
contains an obvious algorithmic idea. Calculation
scheme X, =J; oJ' (an —len) was studied in
(8]
B:E — E". However, the scheme generally does not
converge for Lipschitz continuous monotone operators.

Let's use the idea of work [7] and consider modified
scheme

X,y =J; oJ 7 (Jx, - ABx, — A(Bx, - Bx,_,))

for inverse strongly monotone operators
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with extrapolation term —/t(Bx” —anfl) , and let’s

use update rule for A > 0 like one from [15] to exclude

explicit use of Lipschitz constant of operator B. We
will assume that we know constant g from Lemma 1.

Algorithm 1
Choose some x, € E, x,€E, € (O,i) and
Ays 4, >0.Set n=1.
1. Compute
X, =J} oJ " (Jx, = 4,Bx,— 4, (Bx, - Bx,.)).

2. Ifx,_, =x,=x,,,then STOP and
X, € (A + B)7l 0, else go to 3.
3. Compute
: Xps1 — X, :
min{ 4,7 ... , if Bx,, # Bx,,
n+l = ||B nel an *
A, otherwise.

n

Set n:=n+1 and go to 1.
n) which is created by rule on step 3 is
non-increasing and bounded from Dbelow by

min{ﬂ,l,rL’l } . So, there exists lim A4, >0.

n—0

Sequence (ﬂ,

III. MAIN RESULT

In begin this section, we state the inequality on
which the proof of Algorithm 1 weak convergence is
based.

Lemma 2. For the sequence (xn), generated by

Algorithm 1 the following inequality holds:
¢(Z’ xn+1) + 2/771 <an - an+l s Xpy1 Z> +

A
- ¢('xn+l’xn

+7u )S
n+l1
<¢(z,x,)+24,, (wa1 -Bx,,x, —z>+
+T/'lﬂ;/—nl¢(‘xn’xn—l)_
- I—Tﬂ%—fﬂﬂ/ﬂn ¢(xn+19xn)7

n n+l1

where z E(A+B)_1 0.

Let us formulate the main result.
Theorem 1. Let £ be a 2-uniformly convex and

uniformly smooth Banach space, A:E—>2" bea

maximal monotone operator, B:E —E be a
monotone and  Lipschitz  continuous  operator,
(A +B )7l 0+ . Suppose that the normalized duality
map J is sequentially weakly continuous. Then

sequence (xn) generated by Algorithm 1 converges

weakly to some point z € (4 + B)_1 0.
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IV. CONCLUSIONS

In this paper new splitting algorithm for solving an
operator inclusion with the sum of a maximal monotone
operator and a monotone Lipschitz continuous operator
in a Banach space is proposed and studied. The
algorithm is an adaptive variant of the forward-
reflected-backward algorithm of Malitsky—Tam, where
the used rule for updating the step size does not require
knowledge of the Lipschitz constant of operator B. An
attractive feature of the algorithm is only one
computation of the resolvent of the maximal monotone
operator A and the value of the monotone Lipschitz
continuous operator B at the iteration step. Theorem
on the weak convergence of the method is proved for
operator inclusions in a 2-uniformly convex and
uniformly smooth Banach space. An interesting
challenge for the future is the development of a strongly
convergent modification of the proposed algorithm.
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