

Generalized solvability and optimal control for an integro-differential equation of a hyperbolic type

Andrii Aniksuhyn Taras Shevchenko National University of Kyiv Kyiv, Ukraine

Abstract — We consider an integro-differential operator with Volterra type integral term. We provide a priory inequalities in negative norms for certain spaces. Further, using obtained inequalities we prove well-posedness (existence and uniqueness of the (weak) generalized solution) of the corresponding boundary value problem as well as a theorem on optimal control existence

Keywords — Integro-differential equation; generalized solvability; optimal control; a priory inequalities; Volterra operator.

I. INTRODUCTION

The equations of hyperbolic type are one of the well-known and extensively studied PDEs. Mostly due to the significance of the wave equation. On the other hand, partial integro-differential equations (PIDE) could be more appropriate for simulating physical processes. For example, Volterra integro-differential equations describe various processes in materials with memory [1], [2], [3]. The latter include, for example, some polymers and concrete mixtures.

In this paper, we consider a partial integrodifferential equation that generalizes the wave equation. Its right-hand side belongs to some negative space. This includes (among others) impulse, pointwise, and other actions on the system (see [4]).

Using the method of a priori inequalities in negative spaces [4], [5], [6] we show that there exists a unique weak solution of the equation and optimal control for the corresponding system.

Main notations and functional spaces

In the cylindrical domain $Q = \Omega \times (0,T)$, we consider a system described by the linear integro-differential equation

$$Lu = \frac{\partial^2 u}{\partial t^2} + Au + Bu = F,$$

where $\Omega \subset \mathbb{R}^n$ is a bounded connected domain of the space variables with regular boundary $\partial \Omega$. Here

$$Au = -\sum_{i,j=1}^{n} \frac{\partial}{\partial x_{i}} \left(a_{ij}(x) \frac{\partial u}{\partial x_{j}} \right) + \sum_{i=1}^{n} a_{i}(x) \frac{\partial u}{\partial x_{i}} + a(x)u,$$

$$Bu = \int_0^t \sum_{i=1}^n K_i(t,\tau) u_{x_i x_i}(x,\tau) \ d\tau.$$

In the paper, we suppose that the kernels $K_i(t,\tau)$ are continuous in $[0,T]^2$ and have a continuous derivative with respect to τ . Furthermore, let a_{ij} , a_i , a be continuous functions in $\overline{\Omega}$, $a_{ij}=a_{ji}$ and there

https://doi.org/10.31713/MCIT.2021.01 Oleksandra Zhyvolovych University of L'Aquila, L'Aquila, Italy

exists positive number α such that $\sum_{i,j=1}^{n} a_{ij}(x) \lambda_i \lambda_j \ge \alpha \sum_{i=1}^{n} \lambda_i^2, \text{ for all } \lambda_i \in R \text{ and } x \in \overline{\Omega}.$

Function u(t,x) satisfies the following boundary and initial conditions

$$u\mid_{t=0} = \frac{\partial u}{\partial t}\mid_{t=0} = 0, \quad u\mid_{\partial\Omega} = 0.$$

By L we denote the set of all functions $u \in C^{\infty}(\overline{\Omega})$ such that

$$u|_{t=0}=\frac{\partial u}{\partial t}|_{t=0}=...=0,$$

and by L_T we denote the set of all functions $u \in C^{\infty}(\overline{\Omega})$ such that

$$u|_{t-T} = \frac{\partial u}{\partial t}|_{t-T} = \dots = 0.$$

By H_0^k , S_0^k , V_0^k , H_T^k , S_T^k , V_T^k we denote the completion of the sets L, L_T with respect to the norms

$$\begin{aligned} & \| u \|_{H_0^k}^2 = \int_{\mathcal{Q}} (u^{(k)})^2 + \sum_{i=1}^n (u_{x_i}^{(k-1)})^2 dQ, \\ & \| u \|_{V_0^k}^2 = \| u \|_{H_0^k}^2 + \sum_{i=1}^n \int_{\Omega} (u_{x_i}^{(k-1)})^2 \mid_{t=T} d\Omega, \\ & \| u \|_{S_0^k}^2 = \| u \|_{V_0^k}^2 + \int_{\Omega} (u^{(k)})^2 \mid_{t=T} d\Omega, \\ & \| v \|_{H_T^k}^2 = \int_{\mathcal{Q}} (v^{(k)})^2 + \sum_{i=1}^n (v_{x_i}^{(k-1)})^2 dQ, \\ & \| v \|_{V_T^k}^2 = \| v \|_{H_T^k}^2 + \sum_{i=1}^n \int_{\Omega} (v_{x_i}^{(k-1)})^2 \mid_{t=0} d\Omega, \\ & \| v \|_{S_x^k}^2 = \| v \|_{V_x^k}^2 + \int_{\Omega} (v^{(k)})^2 \mid_{t=0} d\Omega, \end{aligned}$$

respectively. Here $u^{(k)}$ means a derivative of order k with respect to the variable t.

II. RELATED WORKS

There are a lot of papers that use the method of a priori inequalities in negative spaces for various BVP for PDE. See, for example, [7], [8], [9], [10] and the bibliography there. This approach is also appropriate for PIDE. For example, equations of parabolic type were considered in [11], a problem with a non-negative definite integral operator was considered in [12].

In the paper [13] authors consider the case of a purely differential equation (Bu = 0) and obtain a priory inequalities for operator L and some results on

Modeling, control and information technologies - 2021

weak solvability with any integer k. Further, in [14] the case of integro-deferential equation is considered. In case k=1 (in the triple S^0,V^1,H^1) results on weak solvability are obtained. Finally, in [15] authors consider triple S^1,V^0,H^2 (that corresponds to k=2) and provide theorems of generalized solvability. The main goal of the presented paper is to provide a priory inequalities and weak solvability theorems in case k=3, namely in the triple S^2,V^{-1},H^3 .

III. PROPOSED TECHNIQUE

We claim that the following two estimations hold.

Lemma 1. There exists a positive number c such that the inequality

$$||Lu||_{(V_T^{-1})^*} \le c ||u||_{H_0^3}$$

holds for every function $u \in L_0$.

Using the latest lemma we extend operator L onto the entire space H_0^3 .

Lemma 2. There exists a positive number c such that the inequality

$$c^{-1} \| u \|_{S_0^2} \le \| Lu \|_{(V_T^{-1})^*}$$

holds for every function $u \in H_0^3$.

Now, let us consider a problem

$$Lu = F, F \in (V_{\tau}^{-1})^*.$$

Definition. The function $u \in H_0^3$ is said to be a generalized solution of the problem $Lu = F, F \in (V_T^{-1})^*$ if there exists a sequence of functions $u_i(x,t) \in L_0$ such that

$$\|u-u_i\|_{S^2_{\alpha}} \to 0, \quad \|Lu_i-F\|_{(V_{\pi}^{-1})^*} \to 0, i \to \infty.$$

Using the approach from [4] we can prove the theorems on generalized solvability, optimal control, provide a numerical method for mentioned problem solving and prove the convergence theorem.

In particular, we consider the optimal control problem

$$Lu = f + C(h),$$

$$J(h) \to \min.$$

Here h is a control from an admissible set $U_{\partial} \subseteq H$. Let the operator C has the following form

$$C(h) = \sum_{i=1}^{s} \delta(t - t_i) \otimes \phi_i(x), h = \{(t_i, \phi_i)\}_{i=1}^{s}.$$

In this case $H = (\square \times L_2)^s$ is the corresponding control space.

IV. RESULTS/DISCUSSIONS

Theorem 1. For every $F \in (V_T^{-1})^*$ there exists the unique generalized solution for the problem Lu = F.

Theorem 2. There exists positive number c such that the inequality $\|u\|_{H^3_0} \le c \|F\|_{(V_n^{-1})^*}$, holds for every

 $F \in (V_T^{-1})^*$. Here u is the generalized solution for the problem Lu = F.

Theorem 3. Assume that the set of admissible control $U_{\hat{\sigma}} \subseteq H$ is closed, bounded and convex in the

space H. Moreover, let $J(u) = \Phi(u(h))$ be lower semi-continuous with respect to u. Then there exists an optimal control for the problem

$$Lu = f + C(h), J(h) \rightarrow \min$$
.

Remark. The claim of the theorem remains true for other weakly continuous operators of control C as well.

V. CONCLUSION

We have proved the so-called well-posedness of the problem. Using the proved a priory estimates and utilizing approaches from [4], [6] we further considered an optimal control problem and provided the theorem of optimal control existence. Further, it is possible to construct a numerical method for evaluating the generalized solution and mentioned optimal control, etc. We would like to mention as well, that cases $k \ge 4$ are still to be considered as far as it requires non-trivial choosing of so-called "test functions" while establishing a priory inequalities.

REFERENCES

- G. Duvaut, J-L. Lions, Inequalities in Mechanics and Physics, Springer, 1976
- [2] S. Shaw, JR. Whiteman, "Towards adaptive finite element schemes for partial differential Volterra equation solvers." Advances in Computational Mathematics 6.1(1996): 309–323
- [3] M. Falaleev, S. Orlov "Degenerate integro-differential operators in Banach spaces and their applications." Russian Mathematics 55.10(2011): 59–69
- [4] S. Lyashko, Generalized optimal control of linear systems with distributed parameters, Springer, 2002.
- [5] A. Anikushyn , D. Nomirovskyi, "Generalized solutions for linear operators with weakened a priori inequalities." Ukrainian Mathematical Journal 62.8(2011): 1175–1186.
- [6] D. A. Klyushin, S. I. Lyashko, D. A. Nomirovskii, Y. I. Petunin, V. V. Semenov, Generalized Solutions of Operator Equations and Extreme Elements, Springer Science+Business Media, 2011.
- [7] S. Lyashko, D. Nomirovskii, "Generalized Solutions and Optimal Controls in Systems Describing the Dynamics of a Viscous Stratified Fluid." Differential Equations 39.1(2003): 90–98.
- [8] D. Nomirovskii, "Generalized solvability and optimization of a parabolic system with a discontinuous solution." Journal of Differential Equations 233.1(2007): 1–21.
- [9] Tymchyshyn, D. Nomirovskii, "Generalized Solvability of a Parabolic Model Describing Transfer Processes in Domains with Thin Inclusions." Differential Equations 57.8(2021): 1053–1062.
- [10] O.Vostrikov, D. Nomirovskii, "Generalized Statements and Properties of Models of Transport Processes in Domains with Cuts." Cybernetics and Systems Analysis 52.6(2016): 931– 942.
- [11] A. Aniksuhyn, A. Hulianytskyi, "Generalized solvability of parabolic integro-differential equations." Differential Equations 50.1 (2014): 98–109.
- [12] A. Anikushyn, "Generalized Optimal Control for Systems Described by Linear Integro-Differential Equations with Nonnegative Definite Integral Operators." Journal of Automation and Information Sciences 46.6(2014): 58–67.
- [13] A.V. Anikushyn, D. A. Nomirovskii, "Trajectory-final control for hyperbolic equations in different classes of distributions." Bulletin of Taras Shevchenko National University of Kyiv. Series: Phys-Math sciences 3(2008): 119–124.
- [14] A.V. Anikushyn, "Generalized solvability of hyperbolic integro-differential equations." Bulletin of Taras Shevchenko National University of Kyiv. Series: Phys-Math sciences 4(2013): 60-65.
- [15] A.V. Anikushyn, H.M. Hranishak, On a weak solvability of a hyperbolic integro-differential equation, in: Proceedings of the 5-th International Conference for Young Scientists on Differential Equations and Applications dedicated to Ya. B. Lopatynsky, Kyiv, 2016, pp. 31–33.