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Abstract — We  consider an integro-differential
operator with Volterra type integral term. We provide a
priory inequalities in negative norms for certain spaces.
Further, using obtained inequalities we prove well-
posedness (existence and uniqueness of the (weak)
generalized solution) of the corresponding boundary value
problem as well as a theorem on optimal control existence
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1. INTRODUCTION

The equations of hyperbolic type are one of the
well-known and extensively studied PDEs. Mostly due
to the significance of the wave equation. On the other
hand, partial integro-differential equations (PIDE)
could be more appropriate for simulating physical
processes. For example, Volterra integro-differential
equations describe various processes in materials with
memory [1], [2], [3]. The latter include, for example,
some polymers and concrete mixtures.

In this paper, we consider a partial integro-
differential equation that generalizes the wave equation.
Its right-hand side belongs to some negative space. This
includes (among others) impulse, pointwise, and other
actions on the system (see [4]).

Using the method of a priori inequalities in negative
spaces [4], [5], [6] we show that there exists a unique
weak solution of the equation and optimal control for
the corresponding system.

Main notations and functional spaces

In the cylindrical domain Q=Qx(0,7) , we

consider a system described by the linear integro-

differential equation
2

Lu :a—?+Au +Bu=F,
ot
where Q — R" is a bounded connected domain of the
space variables with regular boundary 0. Here

0 Ou 2 ou
Au=-3" g{% (x)§]+ Z,af(x)a“‘a(x)“»

i,j=1 O%; j

Bu = J‘;ZKI' (tﬂr)uxixi (x,7)dr.

In the paper, we suppose that the kernels K, (z,7)
are continuous in [0,7] and have a continuous

derivative with respect to 7 . Furthermore, let a, , q,,

a be continuous functions in Q , a; =a, and there
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such that

exists number a

D a;(OAA za)y " A7, forall 4 €R and xe G,

i,j=1

positive

Function u(z,x) satisfies the following boundary
and initial conditions
Ou
ul_=—|_=0,
‘170 al |r—0
By L we denote the set of all functions u € C” (5)
such that

U]po=0.

ou
u |[:0: 5 |t:0_ =0,
and by L, we denote the set of all functions
ueC” (5) such that
Ou
‘z:T_ 5 ‘z:T: ..=0.

By H) , Si, V), Hf, Sy, V) we denote the
completion of the sets L,L, withrespect to the norms
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respectively. Here u*) means a derivative of order k

with respect to the variable ¢ .

II. RELATED WORKS

There are a lot of papers that use the method of a
priori inequalities in negative spaces for various BVP
for PDE. See, for example, [7], [8], [9], [10] and the
bibliography there. This approach is also appropriate
for PIDE. For example, equations of parabolic type
were considered in [11], a problem with a non-negative
definite integral operator was considered in [12].

In the paper [13] authors consider the case of a
purely differential equation ( Bu=0 ) and obtain a
priory inequalities for operator L and some results on
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weak solvability with any integer k . Further, in [14]
the case of integro-deferential equation is considered.
In case k=1 (in the triple S°,V"',H" ) results on weak
solvability are obtained. Finally, in [15] authors
consider triple S',7°,H* (that corresponds to k=2)
and provide theorems of generalized solvability. The

main goal of the presented paper is to provide a priory
inequalities and weak solvability theorems in case
k =3, namely in the triple S*,V"',H" .
III. PROPOSED TECHNIQUE
We claim that the following two estimations hold.
Lemma 1. There exists a positive number ¢ such
that the inequality

<
e ™

!
holds for every function u € L, .
Using the latest lemma we extend operator L onto
the entire space H, .
Lemma 2. There exists a positive number ¢ such
that the inequality
¢ ullg Sl Lull, .

holds for every function u € H, .
Now, let us consider a problem
Lu=F,Fel').

Definition. The function u € H, is said to be a
generalized solution of the problem Lu=F,F e (V')
if there exists a sequence of functions u,(x,?) € L, such
that

lu—u || ,—0, ||Lu,—F]| _,.—0,i—> .
52 ()

Using the approach from [4] we can prove the
theorems on generalized solvability, optimal control,
provide a numerical method for mentioned problem
solving and prove the convergence theorem.

In particular, we consider the optimal control
problem

Lu= f+C(h),
J(h) — min.

Here # is a control from an admissible set

U, c H. Let the operator C has the following form

C(h) = 25@ ~1)®4,(x), h = {1, )}

In this case H =(UxL,)" is the corresponding
control space.
IV. RESULTS/DISCUSSIONS
Theorem 1. For every F e (V;') there exists the
unique generalized solution for the problem Lu =F .
Theorem 2. There exists positive number ¢ such
that the inequality || u ||H8§ cl|F ||(VT_1)*,holds for every

Fe(V;') . Here u is the generalized solution for the
problem Lu=F .

Theorem 3. Assume that the set of admissible
control U, c H is closed, bounded and convex in the

space H . Moreover, let J(u)=®(u(h)) be lower

semi-continuous with respect to « . Then there exists an
optimal control for the problem
Lu= f+C(h),J(h) > min.

Remark. The claim of the theorem remains true for
other weakly continuous operators of control C as
well.

V. CONCLUSION

We have proved the so-called well-posedness of the
problem. Using the proved a priory estimates and
utilizing approaches from [4], [6] we further considered
an optimal control problem and provided the theorem
of optimal control existence. Further, it is possible to
construct a numerical method for evaluating the
generalized solution and mentioned optimal control,
etc. We would like to mention as well, that cases k >4
are still to be considered as far as it requires non-trivial
choosing of so-called “test functions” while
establishing a priory inequalities.
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