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Abstract — The content of organic carbon is one of the
essential factors that define soil quality. It is also notoriously
challenging to model due to a multitude of biological and abiotic
factors influencing the process. In this study, we investigate how
decomposition of soil organic matter is affected by soil moisture
and temperature. Soil organic carbon turnover is simulated by
the CENTURY model. The accuracy of soil moisture data used is
ensured by data assimilation approach, combing mathematical
model and satellite retrievals. Numerical experiments
demonstrate the influence of soil moisture regimes and climate on
the quantity of soil humus stocks.
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1. INTRODUCTION

Soil is one of the principal components for the existence of
living organisms on the Earth. Intensive use of agricultural
lands in recent decades has resulted in its exhaustion. To assure
sustainable land use, an optimal set of indicators for production
management has to be established.

A significant role in soil fertility is played by the soil
organic matter. The content of organic matter depends on the
soil’s chemical composition, temperature, texture and moisture.
Soil quality is defined largely by the organic carbon stock.
Carbon plays a vital role in supporting soil ecological
sustainability, since it absorbs pesticides and decomposes
excess Nitrogen.

A number of approaches and indices has been developed to
evaluate the soil carbon, taking into account land use practices.
A few notable models for soil organic carbon (SOC) stock are
CENTURY, RothC and PaSim [1].

PaSim is a model simulating the humus, nitrogen and water
balance for grazing lands. It consists of five submodels that
account for physical and biological properties of soil medium,
vegetation type, livestock and microclimate.

RothC is used for evaluating SOC content in upper layers
of the arable lands for arid climate territories. The model
accounts for vegetation, soil type, temperature and moisture.
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The organic remains are classified into plant and resistant to
decomposition remains.

The CENTURY models describes the carbon, nitrogen,
sulfur and phosphorus dynamics. It divides organic remains
into root and surface litter, which, in their turn, are separated
into structural and metabolic remains. The model can also
estimate soil state under different land use and irrigation
scenarios [2].

II. SOIL ORGANIC CARBON MODEL

A. Organic Matter Transformation

After analyzing the principal models for SOC evaluation,
we chose CENTURY as the basis of our model. The model
keeps track of the input plant organic material from
aboveground and root remains, which are divided into
structural and metabolic litter. All soil organic matter is
separated into active, slow and passive pools depending on
their decomposition time. Soil active pool consists of organic
remains and microbes that are easily decomposable; slow
organic matter is biologically and physically resistant to
transformation, and passive matter is physically protected and
less susceptible to chemical turnover.

Essential role in organic matter transformation is played by
the microbial mass, lignin content, soil texture, moisture and
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temperature. The model specifies the relations by which
metabolic and structural litter are separated based on lignin to
nitrogen ratio.

Thus, in CENTURY soil organic carbon is divided into
eight SOC pools, as shown in Fig. 1. Decomposition of each
carbon pool is calculated by the following set of equations:
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where C; is the quantity of organic carbon in the i-th pool
(pools are numbered as in Fig. 1), K; is maximum
decomposition rate for the i-th pool, 4 is a combined abiotic
impact of soil moisture and soil temperature on decomposition,
T,, is effect of soil texture on active SOC turnover, where T is
equal to the sum of silt and clay fraction, L. is the impact of
lignin content of structural material (L,) on structural
decomposition [3].

CENTURY considers that turnover of organic matter in
above and belowground layers is tied to microbial biomass and
microbial respiration. Each carbon transformation involves loss
of fixed fraction of carbon due to respiration. For instance,
organic carbon that leaves soil active pool is divided between
microbial respiration, slow and passive pools and loss due to
leaching.

B. Abiotic Stress

Soil moisture and temperature have significant effect on the
carbon turnover cycle. It has been show by a number of studies
that biological processes leading to carbon decomposition
require certain temperature and moisture regimes. If either is
not met, the decomposition processes are slowed down or even
stopped completely. This effect is called abiotic stress.

We chose the expolinear relation for calculating
temperature stress, following original CENTURY papers [3]:
Al = t10.2 '[2,
2.63 (2)
f = (45-T,)/(45-35), 1, = exp(0.076(1—tl : ))

where 7 is soil temperature, and 45 and 35 are maximum and
optimal temperatures for decomposition, respectively.

For water stress, we make use of an empirical function used
in [4] (retrieved from their Github repository)

3)

where S,.;, in its own turn, is defined as absolute soil moisture
linearly scaled between wilting point 6,,, and field capacity 6.:

Sret =(0-04) /(01 =60 ) (4)

A, =-1.1-82,+2.4S,,-0.29,
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Both stress function and relative moisture values are limited
to the interval [0, 1]. The resulting abiotic stress function is
then a product of temperature stress 4, and water stress A4,,.

III. SoIL MOISTURE MODEL

The soil moisture data are generated by a separate model
that is based on the Richards equation with Mualem—van
Genuchten model for soil parameters. The model is one-
dimensional and calculates moisture profile for the soil layer at
a given point.

To improve the accuracy of model results and update it to
the real world state, we add satellite moisture estimates to the
model. Since neither the model nor the estimates can be
considered absolutely truthful, various data assimilation
algorithms can be used to combine them and thus improve
estimates. We use Newtonian nudging assimilation for the
moisture equation, which is one of the 4DDA methods family.
Basically, Newtonian nudging is realized by adding a special
nudging term to the governing equation, which can be view as
an external force pulling the result closer towards observations.
The implementation and validation of the model and
assimilation are described in our previous work [5].

Moreover, the soil temperature is also modelled since it
often differs from the air temperature. This submodel is
governed by the heat transfer equation based on Fourier’s law.
We also take into account the interrelations between water and
heat flow. The model overall consists of the following
equations:

00 0 Oh
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T(x,O): Ty (x), xe [O;I]. (12)

IV. EXPERIMENT SETTING AND DATA

In this paper, we aim to highlight the effect of soil moisture
and temperature on the organic carbon cycle. For this purpose,
we chose three agricultural sites within Ukraine with different
climates and soils, located in Rivne (near Stepan’), Zakarpattia
(Vynogradiv) and Kherson (Novopavlivka) regions.

Soil classes and parameters are derived from SoilGrids
dataset [6]. The data used for sites are summarized in Table 1.



Modeling, control and information technologies — 2020

Soil carbon stock values, which are used as initial condition for
the SOC model, are distributed between carbon pools
according to the statistics presented in [7].

TABLE II. EXPERIMENT SITES AND DATA
Location, Soil Organie Average Field Wilting
Regi e esrhon sock moisture® | capaci oint
egion typ (kg/mz) e pacity p

Stepan’, Sandy 44 0319 0.21 0.09
Rivne Loam
Vynogradiv, | Clay
Zakarpattia . S:l 0.209 0.33 0.16
Novopavliv-
Tos, Rbierson Clay 49 0.182 0.44 0.2

a. Average soil moisture based on the satellite estimates

The average moisture column in Table 1 demonstrates a

variety of moisture regimes on the experimental sites. For the

first site, moisture is mostly above field capacity, whereas for

the third site the average moisture is below wilting point in

case no irrigation is applied. Thus, the three sites represent
different moisture conditions.

As carbon turnover processes are known to be slow, we
intended to cover at least a few decades with modelling data.
Weather data for temperature and moisture modelling are
assumed as for the nearest weather station, provided by the
LaMetSy service (https://lametsy.pp.ua). Satellite soil moisture
estimates are taken from the Copernicus database [8]. The
simulation is carried out for the period from 1990 to 2020,
since the period before 1990 is lacking coverage with satellite
imagery.

Litter incomes are assumed at 60 and 140 g/(m’-year) of
aboveground and root litter, respectively. These average yearly
values are then distributed on a sine curve for the growing
season (March — September).

V. DISCUSSION OF RESULTS

The results of 30 years modelling of carbon turnover with
described input data are presented in Fig. 2. The first plot
shows the amount of carbon in slow SOC pool, which is the
largest pool and is commonly associated with humus. As seen
from the plot, results are quite similar for wetter sites in
Zakarpattia and Rivne region, with slowly decreasing amount
of humus in the soil. However, for the arid site in Kherson the
quantity of humus is growing quite rapidly over the simulation
period. It might be concluded then that higher moisture, while
increasing overall turnover rate, results in higher leaching and
respiration losses, and, therefore, decreased carbon stocks.
Slower turnover in dryer soils, on the other hand, provides a
more sustainable system. This assumption is also supported by
the fact that soils in the south of Ukraine are much more fertile
than in the other regions.

The second plot shows the amount of plant litter that has
not been decomposed. It includes four SOC pools, both above
and belowground, structural and metabolic. The visible waves
are caused by the cropping cycle, since we assumed non-
uniform vegetation cycle. As suggested above, plant litter on
the two wetter sites is decomposed rather quickly after it enters
the system due to fast turnover rate. On the other hand, plant

99

litter on Kherson site is accumulated during the growing
season, and decomposes in larger amounts in winter.
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Figure 2. The modelled quantity of humus (top) and uncomposrd litter
(bottom) after 30 years
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