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Abstract — An experimental research facility has been
developed to receive vibration signals from mechanisms
with installed rolling bearings. A control block for all
equipment has been created. For the repeatability of the
experiment, an external microcontroller with a
programmed proportional-integral-derivative regulator
was used.

Experiments were carried out to obtain initial data for
different types of bearings. The processed data were
grouped and made publicly available for further research.
It is proposed to solve the problem of emergency stop of
the generator, arising during operation due to bearings
worn, by recognizing the pre-emergency conditions of
rotary rig based on the use of advanced machine learning
techniques: to highlight the signs of vibration and build
clusters according to the degree of worn)

Keywords — vibration;  signals;  vibrodiagnostics;
signal statistics; feature extraction; exploratory data
analysis; machine learning; Fourier transform.

1. INTRODUCTION

Signal processing and analysis is widely used in
radio electronics, seismic analysis, speech recognition,
and vibration diagnostics of industrial structures. From
the point of view of a variety of tasks and applications
of signal processing, vibration diagnostics of structures
is one of the greatest interests. The development of new
methods for analyzing vibrations of constructions is
actively carried out today. The tasks of analyzing
bearing assemblies as one of the most frequent places of
failure of rotating machines have become very popular.
The empirical approaches to vibrodiagnostics that are
widespread now give relatively high-quality results and
are actively used in industry today.

However, the classical methods presented, for
example, in [1, 2, 3], have a limited range of
applications and a fairly large amount of preparatory
work on the use of these methods in applied problems.
There is a shortage of expert analysts who are able to
analyze spectrograms of vibration diagnostics of turbine
generators, wind turbines, workbenches, etc., recorded
by vibration sensors in real time [4].

Thus, it is necessary to develop automated intelligent
systems for online monitoring of vibration conditions
with the function of predicting emergency situations.
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The implementation of this method will help to classify
the vibration states of bearings based on the use of
neural network processing of vibration measurement
data [S5, 6]. This approach provides new opportunities
for diagnosing defects in real mechanical engineering
structures [7].

To build brand new algorithms for the mathematical
analysis of vibrations in bearings, it is necessary to be
familiarized with the classical methods of analysis both
from the side of the experiment statement and from the
side of the signal processing methodology for further
drawing conclusions about the state of the structural
unit. So, in work [8] the frequency of mechanical
vibrations of a motor with a squirrel-cage rotor and an
identical motor which operates under the eccentricity of
a dynamic rotor are analyzed. Radial vibrations are
modeled based on experimental data in no-load and
nominal load modes. The focus is on vibration
frequency and frequency variation. The need for further
study of vibration recognition methods is indicated.

The method for analyzing the operation of bearings
proposed in [9] is distinguished by a more detailed
description of the diagnostics of the spectra of defect
states. Work [10] describes a new approach to
identifying bearing defects, namely, spectral images of
vibration signals. Spectrum images are simply obtained
by fast Fourier transform [11]. Such images are
processed using two-dimensional principal component
analysis (2DPCA) to reduce the size of the feature
space, and then the minimum distance method is applied
to the results obtained to classify bearing faults [12].
The purpose of this work is to develop an experimental
setup for recording the vibration characteristics of
various bearings, to conduct experimental research at the
stand, and to create a data set for further research

II. SET UP THE EXPERIMENT

To achieve this goal, a test bench has been
developed and configured to simulate the operation of
the rotor system. Vibration sensors have been used to
monitor the state of mechanisms in an automatic mode,
to classify the quality of bearings operation with deep
learning methods. The test bench is shown in Fig. 1. The
test bench drawing is shown on Fig. 2.
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Figure 1. Mechanical part of the test bench

A Dynamo Sliven PIK 8 - 6 / 2.5 electric motor has
been used in the design. The motor drives a shaft with
an interruption ring mounted. Interrupts are sent to the
analog-to-digital converter. The speed of rotation is
calculated during operation for a closed-loop speed
control system and is also recorded for subsequent
processing. Accelerometers model GY-61 have been
mounted on two bearing supports. A balanced weight of
3.5 kg has been attached between the struts. The
bearing struts have been designed for bearings of the
6204 type, but with the help of nozzles, model 6202 has
been used in the experiments.
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Figure 2. Test bench drawings

The control unit is powered by a standard current of
220 V. Inside the control unit there is a 30 V power
supply powering a motor.

There are 2 control modes: manual and from an
external microcontroller. DC Speed Controller HHORC-
20A is used for external manual control.

External control comes from the Arduino. At the
input, the Arduino receives the rotation speed, and at the
output it supplies a PWM signal, the frequency of which
is generated by the PID controller. The regulator has
been tuned and calibrated so that the motor accelerates
to 1500 rpm, then maintains this speed and then also
slowly decelerates to 200 rpm. This has been done so
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that the experimental procedure is similar to each other
for any bearing. Thus, for the further analysis it is
proposed to use a stationary time section of the
installation with a constant shaft rotation frequency.
This is a section with an interval of 10 to 20 s.

Accelerometer data has been recorded by an analog-
to-digital converter NI USB 6009. The ADC is
connected to a computer via a full-speed USB interface
and contains eight analog signal input channels (Al),
two analog signal generation (AO) channels, 12 digital
input / output channels (DIO) and a 32-bit counter.

ITII. ALGORITHM AND METHODS OF DATA EXTRACTION
AND PROCESSING

The bearings have been mounted on the shaft as
shown in Figure 2.1. GY-61 ADXL3353 accelerometers
have been mounted on the bearing housing. Bearing on
position 1 is constant during all experiments. This
bearing is new, purchased before starting the
experiments. Bearings on position 2 have been
previously used in various workbenches and machines
and have been replaced from one experiment to another.
In this way, the device and feature generation methods
aim to classify the bearings on position 2.

The first thirty defective bearings are of type 6204.
The rest seventy — 6202. There also has been 7 new
bearings of type 6204 and 5 bearings of type 6202. Data
collection has been performed using an NI USB-6009
with a sampling rate of 3000 records per second. The
speed is determined by an infrared speed sensor. The
data was collected according to the acceleration-hold-
stop scheme. First, the rotor was accelerated to the
desired speed. Then there was a 10-second hold
(hereinafter the stationary interval). Then the motor
stopped. The recording was carried out for the full load
interval.

resulting

The ;
recordings that describe rotors behavior, 91600 pe
bearing on average. Collecting data has been uploaded
on platform Kaggle and it is in the public domain [13].
The resulting dataset consists of many features, detailed
information is presented in table I. For classification, the
collected acceleration data of bearings in three axes: X,
Y, Z will be used. The name of these features contains
the bearing index and the acceleration axis.

10265700

dataset consists of

TABLE I. DATASET COLUMNS DESCRIPTION

Column name Description Units
Experiment ID Unique 1dept1ﬁer of the )
experiment;
. Unique identifier of the bearing on
Bearing 12 1D the first/second position; )
Timestamp Time, measured in seconds; sec
Al X/Y/Z Acceleration along the X, .Y and Z /s
- axes for the first bearing;
A2 X/Y/Z Acceleration along the X, Y an.d 7z /s
— axes for the second bearing;
RPM/HZ Rotation speed; rpm
w The motor power at a time. Watts

An example of recorded vibration for experiment
number 100 is shown in Fig. 3.
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Figure 3. Recorded vibration along the Y axis by two accelerometers

In this paper, it is proposed to use following feature
spaces to build classification models:

e Feature space constructed from the values of
raw acceleration data on a stationary time
interval of the received time series;

e Feature space obtained by evaluating frequency
spectrum from the stationary time interval using
the fast Fourier transform;

e Space of statistics describing signal behavior;

e Space of statistics describing the frequency

spectrum.

The set of statistics have been used in this work is
as follows:

1. Coefficient of variation [14].
Coefficient of variation (1) is a measure of relative
variability.
s
CV =100— 1
= ™
2. Range.

The Range is the difference between the lowest and
highest values.

3. Interquartile range (IQR) [14].

IQR (2) is the difference between the 25th and 75th
percentile of the data. It is a measure of the dispersion
similar to standard deviation or variance, but is much
more robust against outliers.

IQR=Q3—-Q1IQR = Q3 — (4

4. Skewness [14].

Skewness (3) is the lack of symmetry. The larger
values, the greater asymmetry in the distribution of
observations.
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5. Kurtosis [14]

Kurtosis (5) is the extent of the peak in a
distribution. The smaller values, the more uniform
distribution.

)

6. Entropy [15]

Entropy is associated with a state of disorder,
randomness, or uncertainty. In this paper were used two
different ways of measuring Entropy:

a.  Shannon entropy.

HX) = =) pilog, i, ©)

where Nis the total number of observed events,
and p;is the probability of the i event.

b.  Sample entropy [16].

Sample entropy (7) is a modification of approximate
entropy, used for assessing the complexity of
physiological time-series signals, diagnosis diseased
states.

A

SampEn = —log B’ 7

where A — number of template vector pairs having

distance d[X;p41(0), X;ms1 ()] <7; B — number of

template vector pairs having Chebyshev

distance d[X,,(i),X,,(j)] <r; r — tolerance, m —
embedding dimension, X,,, (i) = {X;, X411, - » Xizm-1}-

7.  Energy.
Energy (8) represents time-series signals size.
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8. Hjorth parameters [17]
The Hjorth parameters describe statistical properties
in the time domain.

a. Activity.
Activity (9) represent signal power, or the variance

of time-series.

€)

Activity = var(x)

b.  Mobility.

The mobility parameter (10) represents the mean
frequency or the proportion of standard deviation of the
power spectrum. This is defined as the square root of
variance of the first derivative of the signal divided by
variance of the signal.

Mobility(x) = (10)

9. Hurst exponent [18].
Exponent decreases when the delay between two
identical pairs of values in the time series increases.

10. Fractal dimensions [19].
Fractal dimensions is one of the ways to determine
the dimension of a series in a metric space.

a.  Higuchi [19], [20].
The essence of method is to transform given time-
series X(1), X(2), ..., X(N) into the new one:

X{: X(m), X (m + k), X (m + 2K), ..., X (m +
o) )

where m = 1, k. m and k indicate the initial time and
the interval time, respectively. Then Higuchi defines
the length of the curve associated to each time series
X

]
1/2 (X(m + ik) (12)

“\

Lm(k) =

i=1

—X(m+ (i— 1)k))> [NN;%
k

and takes the average value of the lengths.

b.  Petrosian [19], [21].

The essence of method is in binarizing given time-
series, finding the total number of adjacent symbol
changes in the sequence N, and calculating fractal
dimension:

log,o(n)
log,o(n) + logy (

Fpetrosian = n

n+0.4N»y

(3)
)

11. Zero crossing.

The zero-crossing rate is a statistical feature that
describes the number of times that a signal crosses the
horizontal axis.
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12.  Crest factor.
The Crest factor (14) defines how extreme the peaks
are in a signal.

X x| oo
=| peak|=|| ” (14)
Xrms ”x”Z
Fig. 4 shows the Fourier transform for the

acceleration signals along one axis of two bearings, one

of which is worn out and the other is new. The selected

frequencies are from 1 to 400 Hz.

—— bearing 1 (with defect)
bearing 31 (with defect)

o —— bearing 101 (with defect)
bearing 108 (with defect)
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Figure 4. Fourier transform of raw signals

Fig. 5 and Fig. 6 show the cross-correlation of
Pearson signals and their spectra respectively along each
axis, as well as the rotational speed and power of the
engine. The figures show that the correlation between
them is rather low. This makes it possible to build linear
models based on this data. The figures also show that
there is no correlation between the amplitudes and

acceleration characteristics of the bench, which
complicates the use of empirical approaches to
classification.
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Figure 5. Pearson correlation for signals
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Figure 6. Pearson correlation for signal spectra
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Fig. 7 shows the scaled distributions of the selected
signal statistics. It could be seen that it is problematic to
identify explicit patterns for visual classification based
on them.
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Figure 7. Distribution of signal statistics
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Fig. 8 shows a visualization of the distribution of
derived quantities from bearing signal statistics.
Bearings with and without defects are marked in
different colors. Visualization was carried out using the
t-SNE method [22]. t-SNE is a tool to visualize high-
dimensional data. It converts similarities between data
points to joint probabilities and tries to minimize the
Kullback-Leibler divergence between the joint
probabilities of the low-dimensional embedding and the
high-dimensional data. T-SNE has a cost function that
is not convex, i.e. with different initializations different
results can be obtained. After calculating Pearson's
correlation between statistics (Fig. 9), we can come to
the conclusion that there is a linear dependence

between the presented features. To solve this problem
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Figure 8. Visualization of derived bearing signal statistics

Fig. 11 shows a visualization of the distribution of
the derived quantities from the statistics of the bearing
signal spectrum. Features also have been received by t-
SNE algorithm. As can be seen from this graph, in
contrast to the derivatives of signal features, spectrum
features cannot be reduced to a two-dimensional
subspace without significant loss of information.

Calculation of the correlation (Fig. 12) also showed that
there are features with a strong linear relationship. It
can also be seen that the correlated features differ from
those shown in the signal statistics.

variation

turtosis U

ar
sample entropy [0
shannen entropy I8

energy

hurst 00
petrosian fd
zero crossing 02
higuchi fd
- 04

hjorth activity

(ORI 0 47 -0.06 -0.28 0.03

-08
[T 0.12 047 0.19 0.08

o - = P
5 3 § § F 8 3 B B R B2 E OE OB
i E 4 & £ £ &8 2 5 % 5 & & B
g 5 T E § g 8 8 § 8 £
g 5 = e 5 2 £ E B
2 5 c = £ § 8
a2 8 S E & &
T g & S =
g g £ 5
5 &
-1 -
G b

Figure 9. Pearson cross-correlation matrix for one signal
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Figure 11. Visualization of derived bearing signal spectrum statistics



Modeling, control and information technologies — 2021

- 1.00

L 021 037 012

variation 01 01 094008 056 03 026 02

kurtosis 05003 0 003 0.1
-075

037 DETEERENLE] 02 016 0.01 0.11 0.27 01

N 0.12 [FARGT: I 041 0.07 001 0 016
P 0.66 0.05 0.2 041 MEETN o L4 0.05
sampie entropy 0.16 0. 0 2 3 .0.06

£0.01 001 001 001 002 0 O

- 0.50

shannon entropy 0

energy 0.03-0.41 076 RPN 014 016

[TEN 094 01 027 0 QREENERY 0 014 -0.04

9 005 01 016 005 006 0 016 -0.04m

petrosian fd AL
zero crossing
0.01 0.15 0.26 Lvl:-4)

higuchi fd  SiEa 0.01 [0.36LE] 0.06

hjorth activity 0 025042 017

|- -0.75

5035042

hjorth complexity £ 02 038019

crest factor JUPN 0.86 0.89 0.74 Rl R EREER L I

variation
kurtosis

sker
sample entropy
shannon entropy
energy
hurst
petrosian fd
zero crossing
hjorth activity
hjorth complexity
crest factor

Figure 12. Pearson cross-correlation matrix for spectra of one signal

IV. CONCLUSIONS

The electromechanical part of the experimental
bench is a simulator of industrial equipment with
rotating units of machines and mechanisms. On-line
information about the values of the main vibration
parameters flows from the accelerometers to the control
unit. The information has been recorded on the
computer. Thus, a dataset has been collected for 100
bearings with defects with varying degrees of wear.12
new bearings have been also included in the
experiment. In total, two bearing models participated in
the experiments: 6204 and 6202. The obtained dataset
is proposed to be used to classify bearing defects, to
solve the clustering problem by the degree of wear.

The paper proposes four options for processing the
received signals to obtain a feature space used in the
development of mathematical models for the
classification of defected bearings. These approaches
are better applicable for different models due to
differences in loss of information because of feature
space compression, features number and their
distribution. Using these approaches, it is possible to
build various machine learning models. Thus, the
choice of a particular approach depends on the balance
between the accuracy and speed of the model.

Thus, the approach used to take signals of vibration
sensors and their subsequent processing can be applied
in a wide class of problems using various modern
methods of data classification. To compare the proposed
processing methods, benchmarking is required using
various classical machine learning methods, as well as a
variety of neural network architectures.
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