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Abstract—The conditions of well-posed solvability of searched 

function and its normal derivative three dimensional jump 

problem for the Laplacian and equivalent to them integral 

equation system for the sum of the simple and double layer 

potentials are determined in the Hilbert space, element of which 

as well as their normal derivatives have the jump through 

boundary surface. 
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I. INTRODUCTION

Many physical processes (e.g. diffusion, heat flux, 

electrostatic field, perfect fluid flow, elastic motion of solid 

bodies, groundwater flow, etc.) are modeled using boundary 

value problems for Laplace equation [1, 2]. The powerful tools 

for solving such problems are potential theory methods, 
especially in the case of tired boundary surface or complex 

shape surface [3, 4]. These methods are a convenient for 

calculating desired solution in small domains [5]. In number of 

cases, application of potential theory methods requires 

determination the conditions of well-posed solvability for 

corresponding integral equations. Review of such conditions 

for main three dimensional boundary value problems for the 

Laplacian and equivalent to them integral equations for the 

simple and double layer potentials contains in [6]. These results 

allow us to use projection methods [7, 8] for numerical solution 

of such integral equations, avoiding the use of resource-
consuming regularization procedures [9]. The need to 

determine the conditions of well-posed solvability also arises 

when the sum of simple and double layer potentials is used to 

solve the double-sided Dirichlet and Neumann problems [10] 

or double-sided Dirichlet-Neumann problem [11] in the space 

of functions that, same as their normal derivatives, have a jump 

on crossing boundary surface. When the domain and its 

environment have different physical properties, there is a need 

to solve the boundary value problems with jump conditions. 

Depending on the properties of searched solution when passing 

through the boundary surface, this can be a problem with the 

jump of searched function [12], a jump of its normal derivative 
[13], or a problem with both conditions simultaneously. The 

conditions of well-posed solvability of the latter problem in 

differential and integral formulations are investigated in this 

paper. Methods of integral equations and theory of boundary 

operators [6] enable not only to determine the properties of 

operators of such problems, but also to build effective methods 

for their numerical solution.  

II. NORMAL DERIVATIVE JUMP PROBLEM 

Let G  be the bounded open set in 3R , the boundary of 

which is Lipshitz surface  . Let us denote GRG \' 3 and

introduce into G , 'G  Sobolev spaces )(1
2 GW and 

)'(1
0,2 GW = )}'(,/:)'('{ 2 GLDuruGDu eee  . 

Let us determine the Hilbert space )(2/1
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where i  and e  are the internal and external sides of surface 

 , accordingly, n  is a normal to the surface   external to the

domain G , and )(2/1
2 W is the space duel to )(2/1

2 W . 
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For arbitrary iu )0;(1
2 GW  and )(1

2 GWvi  we have

the Green’s formula [12] 
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 is the duality relation on *VV  . For 

arbitrary ;'(1
0,2 GWue  )0u and )'(1

0,2 GWve  we have

the Green’s formula [14] 
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Introduce the Hilbert space 
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where  V.,.  is the scalar product on V . Introduce the space

:{ 11
0,   HuH }0u . 
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1
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have the Green’s formula 
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The next result is in order [12]. 
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Consider the boundary value problem: to find function 

1
0, Hu ,  (4) 

which satisfied condition 
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The next result is in order [12] 

Theorem 2. Operator 1
1

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has one and only one solution. 

III. SEARCHED FUNCTION JUMP PROBLEM 

Introduce the Hilbert space [14] 
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where P  is the set of constant functions on  . For arbitrary 
1

0, Ku and 1
Kv  from (1) and (2), we have the 

Green’s formula
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The next result is in order [14]. 
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Consider the boundary value problem: to find function 

1
0, Kv ,  (8) 

which satisfied condition 
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The next result is in order [13] 

Theorem 4. Operator 0
0


 is an isomorphism of 1
0, K

onto )(
~ 2/1

2 W  and equivalent to the problem (8)-(9) integral 

equation for the double layer potential 
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has one and only one solution. 

IV. SEARCHED FUNCTION AND ITS NORMAL DERIVATIVE JUMP 

PROBLEM 

Spaces 
1

0, H and
1

0, K are ortogonal relatively 

introduced scalar product [15]. Introduce the space 
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Then from theorems 2 and 4 we have that the following 

result is in order [15]. 
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Determine 

u0 = u1

1
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where   is a boundary operator which matches to the value of 

jump of the normal derivative of searched function its trace on 
the surface  . Operator  , constructed in the form  

 = S
~ 1S , 

where S
~

= U0 and S  is determined according to (6) is an

isomorphism of )(2/1
2 W onto )(2/1

2 W [6]. Note that S
~

and S  are operators of integral equations for the simple layer 

potential equivalent to the Dirichlet and searched function 

normal derivative jump problems respectively. 

Algorithmically, operator   is realized by solving the integral 

equation for simple layer potential equivalent to the normal 

derivative jump problem and calculating by the finite formulas 

the values of searched function on the boundary surface as a 

trace of simple layer potential with the density determined in 

the previous step. 
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where   is a boundary operator which matches to the value of 

searched function jump its trace on the surface  . Operator 
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~
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potential equivalent to the Neumann and searched function 

jump problems respectively. Algorithmically, operator   is 

realized by solving the integral equation for double layer 

potential equivalent to the searched function jump problem and 

calculating by the finite formulas the values of its normal 

derivative on the boundary surface as a trace of double layer 

potential with the density determined in the previous step. 
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From theorem 2 follows that problem (4), (18) has a unique 

solution. Solving this problem is equivalent to solving an 

integral equation for simple layer potential  
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From theorem 4 follows that if the condition 

0p )(
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holds, then problem (8), (20) has a unique solution. Solving 

this problem is equivalent to solving an integral equation for 

double layer potential 
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which, by theorem 4, also has a unique solution. 

Given the results of theorems 2 and 4, we obtain the 

validity of following statement. 

Theorem 6. Under condition (21), the problem (13)-(15) 

reduces to the sequential solution of problems (4), (18) and (8), 
(20) or equivalent to them integral equations for the simple and

double layers potentials (19) and (22), which have the unique

solutions. Then the solution of problem (13)-(15) is determined

by relation (12).

V. CONCLUSIONS

Using for the approximation of unknown densities of the 

potentials a system of N linearly independent functions 

(Lagrangian finite elements, B-splines, etc. [7, 8]), we arrive 

for the solution of problem (13) - (15) by means of the sum of 

the simple and double layer potentials the need to solve the 

system of linear algebraic equations (SLAE) with dense 

matrices of dimension 2N, which requires the performing of 
8О(N3) operations. Using the procedure implemented to prove 

theorem 6 requires the solution of five SLAEs with matrices of 

dimension N, which requires the performing of 5О(N3) 

operations, which is almost 40% less. Thus, applying the 

theory of boundary operators allows us not only to determine 

the conditions of well-posed solvability of separate boundary 

value problems for the Laplace equation, but also to build 

effective methods for their numerical solution using the simple 

and double layer potentials. 
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