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Abstract—Plotting position formulas provide a non-

parametric means to estimate the observed hydrological 

data probability distribution. In particular, using a 

plotting position formula, a plot of the estimated values 

from a theoretical parametric probability distribution can 

be compared with the observation data. It allows an 

examination of the adequacy of the fit provided by 

parametric probability distributions. However, results of 

calculating empirical annual probabilities of exceedance 

observed maxima water discharges show an increase in 

the divergence between the estimates obtained using the 

different plotting position formulas in case of more 

extreme events. Thereby, the choice of a relevant plotting 

position formula becomes a challenge. Different plotting 

position formulas may be admissible options. This article 

shows that the divergence between the plotting position 

estimates can be extrapolated to predict design maxima 

water discharges of low exceedance probabilities. 

Keywords—extrapolation; forecasting; observation 

data; plotting position formulas; uncertainty. 

I.  INTRODUCTION  

There are two basic approaches to forecasting in 
modern hydrology and water management. These are a 
probabilistic approach and genetic (deterministic) 
means. The genetic methods are more adequate and 
scientifically correct but complicated to realize in 
practice because, in the majority, river runoff reasons 
and processes are complex, multifactorial, interrelated, 
and stochastic. Therefore, the probabilistic methods 
based on hydrological observation data statistic analysis 
have been more popular in studying and predicting 
diverse design hydrological characteristics. In particular, 
it is in the case of forecasting maxima water discharges 
relating to riverine floods [1-3]. 

The probabilistic approach is based on frequency 
analyses of observation data [4]. Usually, the time series 
of observed maxima water discharges are considered 
and analyzed in the frame of the stationary hypothesis. 
To forecast design discharges of low annual probability 
of exceedance, parametrical probability distributions are 
used as predictive models [2]. Returning to the problem 
of flood risk management, it should be reminded that 
Directive 2007/60/EC (the EU Flood Risk Directive) [5] 
defines flood risk quantitatively as “the combination of 
the probability of a flood event and the potential adverse 

consequences for human health, the environment, 
cultural heritage and economic activity associated with a 
flood event”. Thus, in any case, the quantitative flood 
risk assessment will require the calculation of the 
probabilities (frequencies) of observed maximal (peak) 
flood discharges. 

Hydrological maxima are specific extreme events. In 
theory, they are not limited to the upper limit. Usually, 
time series of observed pick discharges hold an essential 
positive asymmetry (skewness); sometimes – strong 
outliers [4]. Hydrologists are aware that the true 
probability distributions of maxima discharges of rivers 
are not being identified. In general, there is no 
theoretical or other proper justification for choosing an 
appropriate parametric probability distribution to predict 
peak discharges of floods using observed data [6]. 
Practice shows different distributions can well fit the 
observed time series of annual maximum discharges.  
However, they can forecast various values of peak 
discharge Q (m

3
/s) of a chosen annual probability of 

exceedance P (1/year). Vice versa, depending on 
different distributions, the water discharge can have 
different values of probabilities of exceedance [3, 6-9]. 

II. THE PROBLEM FORMULATION AND THE OBJECTIVE 

OF THE PAPER 

There are a lot of standardized probability 
distribution functions [10] that can be possible options 
(Table I) to choose from, and any of them might be 
considered a permissible hypothesis [1, 3, 4, 6-9]. 

TABLE I. STANDARDIZED PROBABILITY DISTRIBUTION FUNCTIONS 

IN FREQUENCY ANALYSIS OF MAXIMUM DISCHARGES [10] 

Probability Distribution Functions  Country 

Pearson type III distribution (P3) China, Switzerland 

Logarithmic Pearson type III distribution 
(LP3) 

USA, Canada, India 

Extreme value type I, type III distributions 

(EV1, EV3), Generalized extreme value 
distribution (GEV) 

Germany, Great 

Britain, France 

Two, Three parameters log-normal 

distribution (LN2, LN3) 
Japan 

Extreme value type I distribution (EV1) Sweden, Norway 

Kritskyi-Menkel three-parameter 
distribution (KM3) 

Ukraine, former 
USSR countries 

To test them and choose the best option, a plot of the 
estimated values from a theoretical parametric 
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probability distribution is compared with the observation 
data. However, the choice of a relevant plotting position 
formula may also be a challenge when fitting parametric 
probability distributions [11]. More than seventeen 
different plotting position formulas have been proposed 
by hydrologists and statisticians over the years [12]. 
Some of the plotting position formulas, most frequently 
appearing in the hydrological literature, are shown in 
Table II. All these formulas provide a non-parametric 
means to estimate the observed data probability 
distribution. However, there is no worthwhile criterion 
for comparing plotting position formulas to choose the 
more appropriate one relating to a real case study.  

TABLE II. TYPICAL PLOTTING POSITION FORMULAS [6, 11-13]  

Author (year) Formula to calculate Pm (1/year)a 

Hazen (1914) (m  0.5)/n 

Gringorten (1963) (m  0.44)/(n + 0.12) 

Nguyen (1989)  (m  0.42)/(n + 0.3CS + 0.05) 

Cunnane (1978) (m  0.4)/(n + 0.2) 

Blom (1954) (m  3/8)/(n + 1/4) 

Hosking (1990) (m  0.35)/n 

Tukey (1962) (m  1/3)/(n + 1/3) 

Goel (1993) (m  0.02CS  0.32)/(n  0.04CS + 0.36) 

Beard (1945) (m  0.3175)/(n +0.365) 

Kim (2012) 
(m  0.32)/(n + 0.0149CS 

2  0.1364CS +  
+ 0.3225) 

Lebedev (1952), 

Chegodaev (1965) 
(m  0.3)/(n + 0.4) 

Adamowski (1985) (m  0.25)/(n + 0.5) 

Weibull (1939) m/(n + 1) 

a. Pm is the empirical probability of exceedance of the m-th order observed value, m is the 
rank of the value, where the highest one being “1”, and n is the number of observed statistics 

Perhaps, in time, we will know which of the 
recommended parametric probability distributions or 
plotting position formulas were better in a contest of 
forecasted values of future events. However, it may be 
checked only after those events happen. In any case, 
while forecasting, we should regard both the natural 
(stochastic) uncertainty of observation data and the 
epistemic (non-stochastic or subjective) uncertainty 
relating to applying different models [3, 6, 8, 9].    

This paper aims to present for discussion a new 
numerical-analytical method of forecasting design 
maxima discharges using observation data. It is based on 
extrapolation of the divergence between the empirical 
probability estimates that can be obtained by different 
plotting position formulas. The method is presented in 
the case of forecasting the maxima discharges of 0.5% 
and 1% annual probability of exceedance for the Uzh 
River, the Transcarpathia region, Ukraine, using the 
hydrological station (HS) “Uzhhorod” observation data 
from 1947 to 1999. 

III. MATERIALS AND METHODS 

The study employs a time series of maximum 
discharges of the Uzh River observed at the HS 
“Uzhhorod” from 1947 to 1999 [6]. The data sample 
length is 53 years. The maximum discharge within the 
data sample is 1680 m

3
/s (1957); the minimum – of 146 

m
3
/s (in 1961). The mean peak discharge is 689 m

3
/s; 

the sample standard deviation – of 364 m
3
/s. The 

coefficient of variation CV of the time series is 0.53, the 
skewness CS is 0.52, and the CS/CV is 0.99.  

In the study, the scientific methods of theoretical and 
empirical research, analysis and synthesis, expert 
evaluation and comparison, formalization and modeling 
were used, including (1) extrapolation methods [14]; (2) 
fundamental and practical methods of mathematical 
statistics [11-13, 15]; (3) specific statistical methods in 
hydrology [1-4, 6-10]; (4) utility theory methods [16, 
17] and decision making methods under risk and 
uncertainty [8, 9, 18]. 

To test the proposed forecasting method based on 
observation data using plotting position formulas, 
thirteen such formulas were used (See Table II). They 
were considered in terms of possible expert judgments 
(suggestions) for assessing the annual empirical 
probabilities of exceedance of observed maxima 
discharges. As possible theoretical alternatives for 
forecasting design maxima discharges of the Uzh River 
at the HS “Uzhhorod” considered were five parametric 
distributions: 1) the Kritskyi-Menkel three-parameter 
distribution (KM3) (CV = 0.53, CS = CV); 2) Pearson’s 
type III distribution (P3) (CS = 0.52); 3) the Extreme 
value type I distribution (Gumbell’s type I distribution, 
EV1); 4)  the Logarithmic Pearson type III distribution 

(LP3) (CS = 0.44); and 5) the Two parameters 
logarithmic-normal distribution (LN2). 

IV. THE PRESENTATION OF THE PROPOSED 

FORECASTING METHOD 

A. Preliminary modeling and making assumptions  

The pre-modeling included calculating empirical 
annual probabilities of exceedance Pm observed maxima 
discharge employing various plotting position formulas 
depending on the rank m = 1,...,n of the observed values, 
where the highest one has the rank m = 1, and n = 53 is 
the number of observed data. The probabilities Pm were 
presented as percentages. 

Four model cases of forming a data sample were 
considered. The first model data sample included 
observed maxima water discharges from 1947 to 1976 
(30 years); the second data sample was from 1947 to 
1984 (38 years); the third data sample was from 1947 to 
1992 (46 years); the fourth (control sample to test the 
method) was from 1947 to 1992 (53 years). 

It was revealed that different plotting position 
formulas provide similar results for high probable events 
with short return periods Tr,m (Tr,m = 1/Pm, or Tr,m = 
100/Pm if Pm is presented as percentages). These events 
have return periods Tr,m of 5 years or less; the annual 
probabilities of exceedance Pm are 20% and more. 
However, while enlarging the modeling horizon towards 
low probable (more extreme) events, the disagreement 
(divergence) between results tends to increase. The same 
conclusion applies to the chosen alternative parametric 
probability distributions. 

As a metric of disagreement between probabilities 
obtained using different plotting position formulas, the 
divergence indicator dm was proposed [6]:  

 dm = Pm,i / Pm,j, or dm = Tr,m,j / Tr,m,i, i  j,   (1) 
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where Pm,i , Pm,j are the empirical annual probabilities of 
exceedance of the observed maxima discharges, and 
Tr,m,i , Tr,m,j are their return periods calculated using the 
i-th and j-th counterparty plotting position formulas, 

which provide Pm,i  Pm,j, Tr,m,j  Tr,m,i, and dm  1 (e. g., 
Weibull’s and Hazen’s formulas giving marginal, i.e. 
maximum and minimum, plotting position probability 
values), correspondingly; m is a rank of a maxima 
discharge where the highest one has the rank m = 1. 

As a result, regression dependencies relating to the 
indicator dm can be defined: (a) between the return 
periods Tr,m,i, Tr,m,j calculated using the i-th and j-th 
plotting position formulas and the divergence indicator 
dm; (b) between the observed maxima water discharges 
Qm and the indicator dm. The regressions dm,i = f(Tr,m,i) 
and dm,j = f(Tr,m,j) indicate that further enlarging of the 
return period of the observed maxima discharge may 
correspond to an increase in the divergence in plotting 
position estimates the different formulas provide. This 
disagreement depends on the plotting position formulas 
chosen to be compared. The regression dm = f(Qm) 
indicates that further enlarging of the observed maxima 
discharge may also correspond to an increase in the 
divergence in plotting position estimates the different 
formulas provide. By estimating the indicator dm and 
building these regressions, we can make predictions by 
applying extrapolation. In the first step, the prediction is 
implemented using the direct dependencies between the 
disagreement indicator values and the design discharge 
return period values. In the second step, it is used the 
dependence between the discharges and the divergence 
indicator values. Predicting design discharges is made 
using an iterative calculation method. 

B. Using the Fishburn rule to overcome epistemic 

uncertainty of plotting position formulas 

Results obtained using different plotting position 
formulas may be considered expert estimates [6]. Under 
decision-making, these expert judgments may acquire 
different importance [16-18]. For example, in flood 
management strategies, the plotting position estimates 
obtained according to Weibull contribute to choosing 
more cautious decision options. However, more cautious 
options can be associated with additional capital costs. 
Using Hazen’s plotting position formula contributes to 
choosing options with lower capital costs. In turn, it may 
inflict an increase in flood losses in future. 

When making decisions, different plotting position 
formulas can be considered indicators of the 
predisposition to more cautious or less expensive 
decision options. In other words, various plotting 
position estimates obtained using different plotting 
position formulas can acquire their weight level in a 
system of indicators’ importance under the decision-
making process [6]. 

An optimal distribution of the weights of the 
indicators from the point of view of informational 
entropy is referred to as Fishburn’s rule. The Fishburn 
rule considers that the level of indicators’ importance is 
determined only by arranged in descending order of 
importance [16, 17]. According to this rule, the “weight” 
wi  for the  i-th plotting position estimate Pm,i obtained 
using the i-th formula can be calculated as: 

wi  = 2 (k – i + 1 ) / (k  + 1)k,                  (2) 

where i is the rank of the i-th plotting position estimate 
obtained using the i-th formula taking into account the 
level of the formula importance; the highest estimate 
gets the rank i = 1 when there is a predisposition to more 
cautious options, and, vice-versa, when there is a 
predisposition to options with lower capital costs, the 
smallest one has the rank i = 1; k is the total number of 
the ranked-set plotting position estimates (formulas). 

As a result, depending on the selected significance 
option of the different plotting position formulas, the 
rank-weighted estimate of the annual plotting position 
probability Pm,w: 

Pm,w =  Pm,i  wi , i = 1, …, k,                  (3) 

where m is the rank of an observed maxima water 
discharge Qm (m

3
/s). 

Depending on the selected significance option of the 
different plotting position formulas, using the Fishburn 
rule enables getting two possible rank-weighted 
estimates of the annual plotting position probability 
Pm,w: the rank-weighted upper bound estimate (sup) 
Pm,w,sup, the rank-weighted lower bound estimate (inf) 
Pm,w,inf. The rank-weighted upper bound estimate Pm,w,sup 
will correspond to the predisposition to more cautious 
decision options. The rank-weighted lower bound 
estimate Pm,w,inf will correspond to the predisposition to 
less expensive decision options.  

Table III shows the results of the forecasting using 
the proposed method. These are values of the design 
maxima discharges of 1% and 0.5% annual probabilities 
of exceedance for the Uzh River, the HS “Uzhhorod”. 
Forecasting was carried out for four model cases of 
forming data samples. 

TABLE III. RESULTS OF FORECASTING THE DESIGN MAXIMA 

DISCHARGES (P = 1 AND 0.5 1/YEAR, %), THE UZH RIVER, THE HS 

“UZHHOROD” 

Data 

samples 

(years) 

Probability of 

exceedance P 

(1/year, %) 

Design maxima discharge Q 

(m3/s) 

Inf Sup 

1947-1976 

1 1995 2095 

0.5 2545 2730 

1947-1984 
1 1890 1988 

0.5 2332 2490 

1947-1992 
1 1788 1908 

0.5 2200 2324 

Control 
sample, 

1947-1999 

1 1738 1805 

0.5 2113 2222 

 

It should be noted the high values of coefficients of 
determination (R

2
) of the dependencies dm,i = f(Tr,m,i), dm,j 

= f(Tr,m,j), and dm = f(Qm) when regression modeling: 
0.9996, 0.9999, and 0.9997 in the case of the data 
sample of 1947-1976 years; 0.9997, 09998, and 0.9998 
(1947-1984 years); 0.9997, 09998, and 0.9998 (1947-
1992 years); 0.9995, 0.9998, and 0.9983 in the case of 
the control data sample of 1947-1976 years. 
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It is worth also noting the goodness of fit of the 
maxima discharges of 1% probability of exceedance 
obtained by extrapolation of plotting position 
probabilities using the proposed method to the Extreme 
value type I distribution (Gumbell type I, EV1) (See 
Control data sample of 1947-1999 years). The design 
discharge of 1% probability of exceedance obtained 
using the EV1 distribution is 1832 m

3
/s. The upper 

bound estimate (sup) of such a discharge using the 
proposed method and the Fishburn rule is 1805 m

3
/s. 

The relative prediction error is less than 1.5%. The 
lower bound estimate (inf) of such a discharge using the 
proposed method and the Fishburn rule is 1738 m

3
/s. 

The relative prediction error is 5.4%. However, it is 
worth noting the goodness of fit of the maxima 
discharges of 0.5% probability of exceedance obtained 
by extrapolation of plotting position probabilities using 
the proposed method to the Logarithmic Pearson type III 
distribution (LP3). The design discharge of 0.5% 
probability of exceedance obtained using the LP3 
distribution is 2130 m

3
/s. The upper bound estimate 

(sup) of such a discharge using the proposed method and 
the Fishburn rule is 2222 m

3
/s. The relative prediction 

error is approximately 4.2%. The lower bound estimate 
(inf) of such a discharge using the proposed method and 
the Fishburn rule is 2113 m

3
/s. The relative prediction 

error is less than 0.8%. 

V. SOME DISCUSSION REMARKS AND CONCLUSIONS 

When we forecast extreme (maxima) hydrological 
characteristics, can epistemic (non-stochastic) 
uncertainty be a challenge? Yes, it can. It can be a high 
challenge. However, the multi-model approach may 
promote revealing epistemic uncertainty and supporting 
the choice of a better parametric probability distribution.  

There is no proper theoretical or another similar 
justification for choosing an appropriate probability 
distribution to forecast maxima discharges of floods 
using observed data. Plotting position formulas provide 
a non-parametric means to estimate the observed data 
probability distribution. Using a plotting position 
formula, a plot of the estimated values from a theoretical 
parametric probability distribution can be compared 
with the observed data. It allows a visual examination of 
the adequacy of the fit provided by alternative 
parametric probability distributions.  

However, there are more than seventeen different 
plotting position formulas to fit theoretical parametric 
probability distributions with the observed data. The 
issue is the choice of an unbiased empirical formula to 
plot the observed data. Any plotting position formula 
can be an option for fitting parametric probability 
distributions. Based on a multi-model approach, the 
proposed numerically-analytical method may promote a 
justification for choosing an appropriate parametric 
probability distribution to forecast maxima discharges of 
floods using observed data. 

The proposed method applies numerical calculations 
of empirical probabilities using different plotting 
position formulas and extrapolation of the divergence 
between the obtained estimates. The design maxima 
water discharge estimates forecasted by this method are 
also noteworthy. In terms of forecast accuracy, these 
estimates do not differ principally from estimates that 
can be obtained using well-known, traditional 
parametric probability distributions. 

REFERENCES 

[1] R. Maity, “Statistical Methods in Hydrology and 
Hydroclimatology,” Springer Transactions in Civil and 
Environmental Engineering, 2018. 

[2] K. Okoli, K. Breinl, M. Mazzoleni, and G. Di Baldassarre, 
“Design Flood Estimation: Exploring the Potentials and 
Limitations of Two Alternative Approaches,” Water, vol. 11 
(4), 729, 2019, pp. 1–11. 

[3] V. Korbutiak, D. Stefanyshyn, O. Lahodniuk, and A. 
Lahodniuk, “The combined approach to solving issues of the 
flood hazard assessment using water gauge records and spatial 
data,” Acta Sci. Pol. Architectura, vol. 19 (1), 2020, pp. 111–
118. 

[4] J. R. Stedinger, R. M. Vogel, and E. Foufoula-Georgia, 
“Frequency Analysis of Extreme Events”, In Maidment, D.R., 
Ed., Handbook of Hydrology, McGraw Hill, New York, 
Chapter 18 (18.1-18.66), 1993. 

[5] Directive 2007/60/EC on the assessment and management of 
flood risks. Official Journal of the EU, L288/27, 2007. 

[6] D. Stefanyshyn, “Testing a numerically-analytical method for 
prediction design maxima discharges of floods using plotting 
position formulas: the river Uzh case, the “Uzhhorod” gauging 
station data,” Environmental safety and natural resources, 
vol. 46 (2), 2023, pp. 138–162. 

[7] H. Apel, A. H. Thieken, B. Merz, and G. Blöschl, “A 
Probabilistic Modelling System for Assessing Flood Risks,” 
Natural Hazards, vol. 38, 2006, pp. 79–100.  

[8] H. Apel, B. Merz, and A. H. Thieken, “Quantification of 
uncertainties in flood risk assessments,” Int. Journal of River 
Basin Management, vol. 6 (2), 2008, pp. 149–162. 

[9] D. Stefanyshyn, “Probability assessment of the Kyiv reservoir 
overflow,” Environmental safety and natural resources, 40 (4), 
2021, pp. 73–99. 

[10] M. Ren, X. He, G. Kan, et all, “A Comparison of Flood Control 
Standards for Reservoir Engineering for Different Countries,” 
Water, vol. 9 (3), 152, 2017, pp. 1–13. 

[11] C. Cunnane, “Unbiased plotting positions – A review,” Journal 
of Hydrology, Vol. 37 (3-4), 1978, pp. 205–222.   

[12] L. Makkonen, “Plotting Positions in Extreme Value Analysis,” 
Journal of Applied Meteorology and Climatology, vol. 45, 
2006, pp. 334–340. 

[13] H. L. Harter, “Another look at plotting positions,” 
Communications in Statistics – Theory and Methods, 
vol. 13 (13), 1984, pp. 1613–1633. 

[14] C. Brezinski, and M. Redivo-Zaglia, “Extrapolation and 
Rational Approximation,” The Works of the Main Contributors, 
Cham: Springer Nature, 2020. 

[15] L. J. Savage, “The foundations of statistics,” New York: Wiley, 
1954.  

[16] P. C. Fishburn, “Utility Theory for Decision Making,” New 
York: John Wiley & Sons, Inc., 1970. 

[17] P. C. Fishburn, “Non-transitive measurable utility for decision 
under uncertainty,” Journal of Mathematical Economics, 
vol. 18 (2), 1989, pp. 187–207. 

[18] M. J. Kochenderfer, “Decision-making under uncertainty. 
Theory and Application,” Massachusetts: The MIT Press,  2015. 

 


