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Abstract—We consider the problem of simplifying a 

system of ordinary differential equations obtained as a 

result of reconstruction from a single observed variable. 

To solve the problem, we propose two methods: analytical 

and numerical-analytical. Both methods were applied to a 

third-order system of ordinary differential equations with 

polynomial right-hand sides and the results of the 

methods were compared. 
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I.  INTRODUCTION 

The problem of identifying a system of ordinary 
differential equations (ODE) from time series of 
observed variables [1] is often occurred in nonlinear 
dynamics. One of the special cases of this problem is the 
reconstruction problem, i.e. identification of an ODE 
system based on one observed variable. If only 
numerical methods are used for reconstruction (for 
example, the Bock's algorithm [2]), then the result can 
be an ODE system containing redundant terms that have 
no physical meaning. In such a situation, the task of 
simplifying the ODE system may arise. Methods for 
solving this problem are discussed in this paper. 

II. FORMULATION OF THE PROBLEM 

We assume that the ODE system reconstructed by 
the numerical method has the form 

 

where ai, bi, ci, i = 0, ... , 9, are constants, x1 – observed 
variable. According to [3], a system that precisely 
describes the dynamics of a studied process will be 
called the original system (OS). We will assume that the 
general form of the OS equations and the numerical 
values of the coefficients were obtained using one of the 

well-known numerical methods and some of the 
coefficients of the equations are redundant. Even if 
some of the found coefficients of OS (1) will have 
values close to zero, this would not mean that these 
coefficients can be neglected, since it could sometimes 
lead to a significant error. Since the structure of the 
system (1) may be not optimal due to containing 
redundant terms, we will call it unoptimized original 
system (UOS). One needs to find instead of UOS 
another system that we will call a minimized original 
system (MOS). It has the form 

  

where P1, P2, P3 are polynomials, like in system (1), but 
the total number NMOS of nonzero coefficients in the 
right-hand sides of system (2) is subject to the condition 
NMOS < NUOS, where NUOS is the total number of nonzero 
coefficients in the UOS. In the process of simplifying 
the UOS equations, the auxiliary type of ODE systems 
proposed in [3, 4] will be used. We will call a 
differential model (DM) [1] a system of ODEs of the 
form 

  

where F is a polynomial function or a ratio of 
polynomials. In this case, the observed variable DM y1 
coincides with the observed variable OS, and all DM 
coefficients can be analytically expressed through OS 
coefficients. This fact allows us to formulate an obvious 
statement used in [5, 6]: two different original systems, 
which have the same observable, have the same DM that 
was obtained from this observable. This statement 
permits to vary coefficients of the OS in such a way that 
the coefficients of the DM would remain unchanged. 
Taking into account the above, two methods can be 
proposed to simplify the UOS structure – the analytical 
method [7] and the numerical-analytical one [8]. 
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III. THE ANALYTICAL METHOD 

The analytical method for simplifying the UOS 
structure [7] uses analytical relationships between the 
OS and DM coefficients as follows. To simplify the 
structure of the UOS, it is sufficient to make some of its 
coefficients equal to zero and to change values of the 
remaining coefficients in such a way that the DM that 
corresponds to the MOS would coincide with the DM 
corresponding to the UOS. To do this, all UOS 
coefficients can be divided into three sets – uniquely 
determined, preset and adjustable. Uniquely determined 
coefficients can be analytically expressed in terms of 
DM coefficients, so they cannot be excluded from the 
UOS equations. Adjustable coefficients can be 
expressed in terms of DM coefficients, uniquely 
determined and predefined UOS coefficients. Therefore, 
when changing the values of the preset coefficients, the 
adjustable coefficients will change so that the DM 
coefficients remain unchanged. Thus, simplifying the 
UOS equations can be done in the following sequence: 

1) To get analytic relations between coefficients of 

the DM and coefficients of the UOS. 

2) Separate the set of uniquely determined 

coefficients of the UOS using analytic relations. 

3) Make an analysis of relations for coefficients for 

the DM and obtain relations that define adjustable 

coefficients of the UOS in terms of coefficients of the 

DM, uniquely determined coefficients and preset 

coefficients of the UOS. 

4) Obtain values of the coefficients of the MOS by 

substituting, into the relations obtained in Step 3, values 

of the coefficients of the DM, the uniquely determined 

coefficients of the UOS, and zeros for the preset 

coefficients. 

5) Find the initial values of the variables in MOS so 

that its observable coincides with the observable in the 

UOS. 
Let us remark that choice of different sets of preset 

coefficients could lead to MOSs with different 
structures. 

The analytical method was applied to simplify 
system (39) from [9] that was obtained from Lorenz 
system [10] using the “Ansatz library” method. The 
system contains NUOS = 21 coefficients, instead of 
7 coefficients as in the Lorenz system. This Lorenz-like 
system has the form 

  

The variable x1 was taken as an observable. A DM that 
corresponds to OS has the form of a fractional rational 
function with 35 coefficients in the numerator and 
1 coefficient in the denominator. The values of the DM 
coefficients were analytically calculated based on the 
values of the UOS coefficients. The analytical method 
outlined above was then applied. It was found that in 
system (4) there is only one uniquely determined 
coefficient – a2. Coefficients a0, b1, b2, b4, c8 were taken 

as preset coefficients. Resetting these coefficients to 
zero allowed us to obtain MOS with NMOS = 16 
coefficients. Wherein we set to zero the preset 
coefficients with different values, for example, 
b2 = 11.617. Hence, this approach permits to set to zero 
not only small coefficients of the UOS. 

A comparison of the time series x1 for the UOS and 
the MOS has been carried out. For this purpose, the 
initial conditions UOS and MOS were chosen at which 
their observed variables coincide and both systems were 
integrated over an interval of 50 s with a sampling step 
of 0.001 s. To estimate the degree of coincidence, we 
calculate the value of coincidence time, tc, for which the 
time series for x1(t) and x'1(t) in the UOS and the MOS, 
correspondingly, differ by no more than Δ, 

  

The Δ value was 10% of the range of the time series in 
the UOS (4). With such a Δ, we have obtained 
tc = 32.916 s. The discrepancy between the time series 
may be explained by chaotic character of the time series 
and numerical errors. 

To make a comparison, we have considered the 
structure optimization procedure for UOS (4) in the case 
of periodic oscillations. To get periodic oscillations, we 
changed value of a1 with other coefficients of the UOS 
remaining unchanged. As a result of simplifying UOS, 
MOS was obtained with the same structure as in the 
previous example, but with different coefficient values. 
Integrating this MOS resulted in tc = 50 s, that is, the 
time series coincided with acceptable precision on the 
entire integration interval. This example confirms that 
the main reason for the deviation of the UOS and the 
MOS time series is the chaotic nature of the oscillations. 

As we have mentioned before and that can be seen 
from the given procedure, it uses no numerical methods. 
No numerical methods are also used when getting to the 
OS from the DM. This fact makes the proposed 
approach different from the Ansatz library method, 
where one uses a numerical procedure “to invert the 
maps between the differential models and corresponding 
ansatz models” [11]. 

IV. THE NUMERICAL-ANALYTICAL METHOD 

The numerical-analytical method for simplifying the 
structure of UOS [8] is based on the idea that MOS can 
be obtained if we assume an approximate, rather than 
exact, coincidence of the time series of observed 
variables UOS and DM. In this case, the DM may have 
a simpler structure and can correspond to a MOS with 
fewer terms in the equations. To obtain an approximate 
DM, you can use the numerical method [4], which 
allows you to obtain numerical values of the DM 
coefficients from the time series of the observed variable 
UOS. As a measure of the coincidence of the time series 
x1(t) and y1(t) UOS and DM, respectively, the relative 
root mean square was used: 
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  

where m is the number of time series points; Δt is the 
sampling step of the time series. 

The detailed implementation of the numerical-
analytical method is as follows: 

1) According to the time series of the observed 

UOS variable, perform a numerical reconstruction of 

the DM. During numerical reconstruction, in addition to 

the values of the DM coefficients, their significance 

[11] is also calculated which is determined by the 

formula 

  

where M(Nk) and σ(Nk) are the mean value and root 
mean square of the DM coefficient Nk, respectively. The 
significance value is used to identify which coefficients 
are present (or absent) in the DM equations. Higher 
values of αk correspond to the coefficients that are 
present in DM. 

2) Simplify the DM structure using the significance 

values of its coefficients. 

3) If the DM structure obtained in Step 2 by the 

numerical method does not correspond to the DM 

structure obtained analytically, then the structure from 

Step 2 must be made corresponding to the analytical 

one. Namely, it is necessary to add or remove a 

coefficient from DM, regardless of its significance, 

calculated in Step 2, otherwise the analytical transition 

from OS to DM will become impossible. That is, it will 

be impossible to obtain a relations connecting the DM 

and the OS coefficients. 

4) Reduce the number of DM and OS coefficients 

by repeating Steps 1-3 until δ (6) is within acceptable 

limits. 

5) Perform an analytical transition from a 

simplified DM to an OS that can be used as a MOS. 
The numerical-analytical method was applied to 

UOS (4) To obtain a time series of the observed variable 
x1(t), the system was integrated over an interval of 20 s 
with a sampling step of 0.002 s. Using the time series, a 
numerical method was used to obtain a DM with 
36 coefficients, for which δ = 0.29%. Simplification of 
the DM in accordance with Steps 1-3 of the proposed 
sequence of actions made it possible to consistently 
obtain a DM with 15 coefficients (δ = 0.77%), 
11 coefficients (δ = 2.82%) and 12 coefficients 
(δ = 2.45%). The last DM corresponds to MOS with 
NMOS = 9 coefficients – a2, b1, b2, b6, b7, c3, c4, c5, c7. 
When integrating MOS, a time series of its observable 
x'1(t) was obtained, for which the value of coincidence 
time (5) was tc = 3.7 s. After specifying the initial MOS 
conditions, the time series x'1(t) was obtained, for which 
tc = 20 s. 

V. COMPARISON OF METHODS FOR SIMPLIFYING THE 

UOS STRUCTURE 
The considered methods are intended to simplify the 

structure of the equations of the ODE system obtained 
by reconstruction from the time series of one observed 
variable. Unlike most reconstruction methods, the 
considered methods use information about the equations 
and values of the UOS coefficients, rather than time 
series, as input data. This allows the researcher to 
simplify the UOS, which has been obtained in the past 
by other researchers and for which time series are not 
available. To apply both methods, the following 
conditions must be satisfied: an ODE system contains 
(presumably) excess terms and it is possible to pass 
analytically to a DM from the OS. 

The analytical method allows to researcher to obtain 
a MOS for which the observed variable is proven to 
coincide with the observed variable UOS. Therefore, 
using the analytical method, it is possible to exclude 
even coefficients with large absolute values from the 
UOS equations without loss of precision, which can be 
important in the case of chaotic systems. Another 
advantage of the analytical method is that, in general, 
several MOS structures can be obtained. Then it is 
possible to choose the one from them, based, for 
example, on the physical meaning of the equations. 

The numerical-analytical method allows to 
researcher to obtain MOS with fewer coefficients than in 
the case of using the analytical method. In this case, 
MOS only approximately reproduces the observed UOS 
time series. The numerical-analytical method is intended 
for cases where it is acceptable for MOS to correctly 
reproduce a time series over a shorter time interval than 
UOS. 
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