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Abstract—The optimization of parameters for 

concentrated sources that influence the operation of a 

dynamic network structure is the focus of this study. The 

network structure comprises numerous one-dimensional 

objects, each governed by a system of ordinary differential 

equations with nonlocal boundary conditions to describe 

their states. Sources affect individual points within these 

subobjects, as well as their connection points. The 

optimization process aims to determine the optimal 

locations and power levels of these sources, based on 

predefined target functionality criteria. We derive the 

necessary optimality conditions for the concentrated 

sources' parameters and present the results of numerical 

experiments using a test problem as an illustrative 

example. 

Keywords—sources; placement of sources; non-local 

conditions; optimality conditions; functional gradient. 

I.  INTRODUCTION 

The optimization problem involving the placement 
and power allocation of concentrated sources [1 – 4] that 
impact the performance of a complex system has been 
thoroughly investigated. This system comprises 
numerous one-dimensional components, each 
characterized by a set of ordinary differential equations 
with nonlocal boundary conditions. These components 
are interconnected in arbitrary sequences, relying solely 
on the states at their respective starting and ending 
points. 

We refer to such complex objects as dynamic objects 
with a network structure, drawing an analogy to [5], and 
the corresponding mathematical models as network 
models. These objects are conveniently represented as 
directed graphs. It is important to note that these graphs 
are typically incomplete, with most of the elements in 
the connection matrix set to zero. Non-zero elements in 
this matrix indicate connections between the initial and 
final states of individual blocks corresponding to 
adjacent links in the graph. The problem under 
consideration encompasses various challenges, notably 
including the optimal control of transient processes in 
the unsteady flow of liquids or gases within complex 
pipeline networks [2, 3]. The mathematical models 
governing these processes consist of subsystems of 
hyperbolic partial differential equations, each describing 

fluid movement within a distinct section of the pipeline. 
At the junctions between these sections, continuity of 
flow and material balance conditions are upheld, 
resulting in nonlocal boundary conditions. The 
application of the method of characteristics in either 
time or spatial variables (analogous to the 
decomposition method) transforms the problem of 
controlling material flow within the transportation 
network into the problem addressed in this article. 

II. STATEMENT OF THE PROBLEM 

We consider a complex object consisting of m links 
(blocks), randomly connected by their ends, the 
structure of which is conveniently represented in the 
form of a directed graph. 

The set of all vertices of the graph will be denoted 

by . I ., and the set of links. ( , )k s . of length 
ksl  with a 

beginning at the vertex k I  and an end at the vertex 

s I will be denoted by   , : , ,J k s k s I   

, ,I N J m I  indicates the number of elements 

of the set I . 

Let the sets of links  ( , ) : ,i iJ j i j I    

 ( , ) :i iJ i j j I    respectively entering and leaving 

the i th vertex, iI   and iI   the sets of vertices adjacent 

to the i th vertex, which are respectively the ends and 

beginnings of links from the set , ,i i i iJ J J J   
.i i iI I I   Let us denote  

, , ,i i i i i i i i iJ I n J I n n n n          i I . It's 

clear that       
, 2 .i i i

i I i I i I

n n m n m
  

      

In practical applications, as a rule, the relation 

, ,in N i I   holds, i.e. the number of vertices 

adjacent to any vertex is much less than the total number 
of vertices. 

Each link in the graph is associated with an 
independent subobject (block). Let the state of each of 
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the links ( , ) , ,ik i J k I i I    be described by a 

system of  linear nonautonomous ordinary differential 

equations 

( )
( ) ( )

( ) ( ),

(0, ),

ki
ki ki

ki ki ki ki

ki

du x
A x u x

dx

B w x f x

x l

 

 

  



   (1) 

with ,iM  i iM n  , linearly independent boundary 

conditions specified in undivided form 

(0) ( ) v ,

1, , .

i i

ik ik ki ki ki i

j j j

k I k I

i

g u q u l

j M i I

  

 

 

 
 (2) 

Here functions ( ) ( ; ) Rki kiu x u x     characterizes the 

state of the ( , )k i  th link with length 
kil  at the point 

0, kix l    ; ( , v, )w    vector of parameters to be 

optimized, whose parameters are 

1R , ( ( ,..., ) R : , )ki
ki

ki

ki ki ki

iw
w w w w w k I i I





       , 

ki

jw   j - th component ki - dimensional  ,k i - th 

external source acting on the  ,k i th subsystem at the 

point 0, ,ki

ki kil


      ( : , )ki

ik I i I     , 

R m  , m m ; v R M ,  v
v= v R ,i

i

Mi i I   , 

 
T

1v v ,..., v , v
i

i i i i

M j   j - i is the component of the 

external source acting on the i th vertex. Let’s denote 

k

ki

i I k I

 
 

 , 
1

.
N

i

i

M M


  

The given in the problem are: ( ) constkiA x  , 

( )kif x   respectively  – dimensional square matrix 

and vector continuous at [0, ]kix l  functions;  
kiB   

( )ki - dimensional scalar matrices; row vectors 

 ,1 ,,...,g ,s s sik ik ik

j j jg g   , 1,s i ik I s n  , 

 1 ,..., ,s s sk i k i k i

j j jq q q   , 1, ,s i ik I s n   1, ,ij M  i I . 

If 0
ki

kiB  , then this means that there are no sources 

in the ( , )k i -th section. 

In practical problems, depending on the sign of the 

source parameters 
kiw , ,ik I i I  , the external 

source at a point 
ki is called “outflow” or “inflow”. 

The total number of subsystems in equation (2.1) is 
equal to the number of links m  in the network, each of 

which connects to adjacent links (blocks) in an arbitrary 
order solely through non-separated (nonlocal) boundary 
conditions, as described in equation (2.2). The total 
number of differential equations in system (2.1) is equal 
to  m , and the number of boundary conditions in 

equation (2.2) should also be equal to ,M  ensuring 

compatibility between equations: M m . 

We will assume that the boundary value problem (1), 
(2) has a unique solution. This, as is known [9], depends 

only on matrices ( ),ki

iA x k I  , vectors ,sik

jg  

, 1,s i ik I s n  , sk i

jq , , 1, ,s i ik I s n   1, ,ij M  

i I , and does not depend on other data involved in the 

problem, in particular, on unknown vectors , v, .w   

Based on practical considerations, restrictions are 

imposed on the values of the parameters , , vki ki iw  , 

,ik I i I  , optimized in the problem: 

, v , [0; ],ki i ki

ki i ki ki

W V
w l


       

ki i ki

ki

W V 
     .        (3) 

We will assume that the sets of admissible values 

,ki iW V
   are convex and compact. It is required to 

find such values of the vector components ( , v, )w   

for which the functional 

2

0

( , v, ) ( ) ( )

( , v, ),

ki

i

l

ki ki

R
i I k I

w u x U x dx

w







 

   



   

2

1

22

2 3

ˆ( , v, )

ˆˆv v .

kii

Mi

mkii

ki ki

i I k I R

i i ik ik

R
i I i I k I R

w w w




 

   



 

 

  

  

   



 
(4) 

gets the minimum value. 

The optimized finite-dimensional vector ( , , v)w  , 

which determines the parameters and locations of 
external sources, in real problems has a small 
dimension, despite the large dimension of the system of 
differential equations (2.1) itself. 

III. METHODS AND RESULTS OF THE STUDY 

The convexity and differentiability of the functional 
(2.5) are studied, formulas for the gradient of the 
functional are obtained, and the necessary conditions for 
optimality with respect to the parameters to be 
optimized are formulated. 

Theorem 1. Let all the conditions imposed on the 
functions and parameters involved in the problem (1) -

(4) be satisfied. The functional ( , v, )w   is convex in 

, vw  , for a fixed admissible vector  . 

It is easy to prove that the functional ( , v, )w   is 

not convex on   if the condition 0ki kiB w   is satisfied 

for at least one section ( , )k i J , i.e. there are links that 

are influenced by external sources. 

The differentiability of the functional (4) and the 
formulas obtained in the work for the components of its 

gradient over the optimized triple ( , v, )w   are 

investigated. Necessary optimality conditions are 
formulated in variational form for problem (1) – (4). 

In many practical applications, external sources do 
not participate at all links and vertices of the object. In 
particular, on some links or vertices their values may be 
set and not optimized. In these cases, the corresponding 
components of the gradients of the functional 

grad ( , v, )w w  , vgrad ( , v, )w  , grad ( , v, )w   are 

not calculated and are taken equal to zero. 
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To determine the optimal values of ( , v, )w  , 

using formulas for calculating the gradient components 
of the functional of the problem (1) – (4), one can use 
effective first-order optimization methods, for example, 
the gradient projection method [6]. 

IV. CONCLUSION 

The optimization problem for a network structure is 
examined, which is characterized by a system of 
differential equations featuring large ordinary 
derivatives and nonlocal boundary conditions. It is 
demonstrated that the conjugate problem shares the 
same characteristics as the direct problem. Furthermore, 
the expressions for the gradient components of the 
functional, based on source parameters, incorporate 
values of both direct and adjoint variables. These 
variables are exclusively defined at their respective 
vertices and blocks. 
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