
Thermal condition of cohesion in a two-layer roll of a 

rolling mill 
https://doi.org/10.31713/MCIT.2019.16

Viktor Lyashenko  
Department of information dsience and higher mathematics 

of Kremenchuk National University named after Mykhaylo 

Ostrogradskyi, Krementchuk, Umkraine  

viklyash2903@gmail.com 

Olga Demyanchenko  

Depattment of natural-science and humanities 

 Azov Marine Institute of National University 

“Odessa Marine Academy”   

Mariupol, Ukraine  

olgademyanchenko@gmail.com 

Abstract— A condition of heat exchange between the layers 

having different thermalphysic properties in a two-layer 

cylindrical roll of a rolling mill is analyzed foe an ideal thermal 

contact.   It can be realized with application of the condition of 

heat balance of one of the layers in the cylindrical area for a 

homogeneous equation of heat conductivity. Analyzed was a 

simplified target setting in the radial section with a supposition, 

regarding an averaged in radius temperature distribution in the 

outer layer. By applying the condition of the thermal balance and 

by integrating the homogeneous equation of heat conductivity in 

the two-layer area a condition of cohesion of an impedance type 

in case of an ideal thermal contact between the layers was 

constructed. 

Keywords— mathematical simulatoin, heat conductivity 

equatuins, thermalconditoin of an impedance type. 

I. INTRODUCTION 

Contemorary requirements for the quality of production of 

rolled stock demand improved reliability of equipmnet 

operatoin, especially durability of rolls [8,9]. It can be realized 

by means of application of two-layer rolls, their outer layer 

being made of wear-resistant materials and their innerv layer 

being made of heat-resistant materials. Durability of two-layer 

rolls can be increased by means of optimization of their 

thermal operatoin mode and control of the processes of heat 

exchange in roll’s pass with the help of a mathematical 

simulatoin model and the systems of computer mathematics 

[5,6]. The heat from the surface of a two-layer roll with a 

cylindrical shape is passed to its axis by means of heat 

conductivity[1-3]. Normally two-layer rolls of a rolling mill 

possess different thermalphysics properties and there is a 

dense thermal contact between them. With a suppositoin of an 

existence of stationary heat exchange let us analyze the 

condition of thermal interaction at transitoin from one layer to 

another. Such thermalphysics model describes the process of 

rolling productoin in iron and steel industry and leads to a 

mathematical simulation model, based upon a homogeneous 

equation of heat conductivity, that has in the cylindrical 

coordinate system of the limited   area the following view: 
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Now let us analyze the equation of heat balance in an 

arbitrary point of the area of    (Fig. 1)  

( ) 0tdiv grad u c u ds



 − =   . (1) 

In our case  area – is a section of the ring, located 

between the circles of 2R  і 1R  ( )2 1R R radii and two radii 

that form angles 1  і 2  ( )2 1  with the start of the

coordinates. Radius turn is performed from 1  angle to 2

angle (in a counterclockwise direction). 

Figure 1. Area   

Let us denote 

2
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h h
R R R R= + = −       (3) 

Having applied Ostrogradskiy’s formula let us now 

rearrange the first additive under the integral sign (1) [7],  

( )
u

div grad u ds dl
r

 

 


=
  , 

where   -   area contour. 
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Let us evaluate the integral along the boundary of  area. 
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By passing to the polar coordinates cosx r = , 

siny r = , at  const = we will get : 
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Now, let us consider the third addition in the previous 

expression, using (2) 
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Now, let us evaluate the second additive with (1) with 

regard to (2) and (3) 
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Thus, instead of (1) we get the equation 
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By applying the theorem regarding the average, we can get 
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The formulae (4) and (5) – are condition of cohesion of an 

impedance type for a cylinder.  

Now, let us consider a simplified target setting. Let one 

part of the surface of a two-layer cylinder, rotating around its 

axis with constant velocity   is heated by a constant heat 

flow the density of which is 0,w t t     + while the

other part radiates heat into the ambient space in accordance 

with the laws of Newton and S. Bolzman.  For determination 

of temperature distribution ( ), , ,T T r z t=  in such cylinder

on the assumption that temperature distribution of the outer 

layer does not depend upon its radius we can pass to the 

analysis of the averaged temperature field along the radius in 

the outer layer. Thus, we can reach the following boundary 

problem regarding adhesion in the area:  

( ) 2, , , 0 ,0 2 ,0 , 0t r z t r R z l t   =       
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( )1 1 2 2( 0, , , ) 0, , , ,r rT R z t T R z t   + = − (9) 

( )1 1 2 2( 0, , , ) 0, , , ,T R z t T R z t   + = −  (10) 
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( ) ( ), 2 , , , , , ,T r z t T r z t  + =      (14) 

where w – being the heat flow from the stripe to the rolls in 

the area of the contact of the stripe with rolls 1 2R R . At such

conditions of heat exchange we can assume in the 

mathematical simulation model that the temperature of the 

cylinder along its length remains constant , so the derivative 

along z  can be neglected, assuming that 0.
T

z


=


 At that the 

problem (6)-(14) is simplified, the condition (8) disappears, 

while the equation (6) acquires in the area of 

( ) 1 2, , 0 ,0 2 , 0t r t r R t    =      the following

view: 
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For investigation of the temperature field of the inner cylinder 

it’s enough to know the average temperature distribution in the 

outer one (See Fig. 1). So, for evaluation of the heat flow 

through the surface of the inner cylinder we cam multiply the 

equation and (15) by rdr  and integrate along the layer’s 

thickness within from 1R to 2R . 

By applying the relation 

2

1

2
( , ) ( , , )

R

R

u t T r t rdr
S

 =  ,                (16) 

where S – is the area of the perimeter of the outer layer , we 

will get after rearranging 

Figure. 2 Two-layer cylinder 
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Paying attention to the generalized theorem regarding the 

average value and taking into account (11)–(13), we may write 

down 
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By dividing both parts of the equation by 2 1R , we will 

receive that 
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our transformations we will have for the boundary of the inner 

and outer cylinders the condition of cohesion of an impedance 

type  
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where i const = , ( ) ( )0 1 2, ,g g T g T  – are constant values

or partial-monotonous functions. 

The obtained boundary condition of cohesion of an 

impedance type (18) is but a particular case of a more 

complicated condition (5). Both conditions (18) and (5) seem 

to be suitable for applying for solving boundary problems for 

multi-layer cylindrical areas, particularly for investigation  of 

temperature distributions in multi-layer rolls of rolling mills 

and rolled crystallizers. 

II. CONCLUSIONS

Obtained in the work was the condition of thermal 

cohesion between the layers of a rolling mill rolls of 

cylindrical shape, possessing different thermalphysics 

properties of their layers at dense thermal contact of the layers. 

This condition was set up with application of the condition of 

the heat balance of the area that includes the boundary of 

separation of the layers. The objective of obtaining this 

condition was in the necessity of developing and investigating 

a mathematical model  of heat distribution in the rolls when a 

metal stripe or sections are being rolled. The reason was a 

necessity of designing new advanced process equipment. On 

the basis of the equation of heat balance of an element of two-

layer cylindrical area and the boundary condition of the fourth 

order a condition of an impedance type was developed, which 

has a tangential derivative along with the normal derivative. 

Such condition allows to investigate temperature distributions 

in multi-layer and complicated noncharacteristic areas. 
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