

Orchestration Of Model Computing Assets For

The Development Of Digital Twins

Oleksandr Stepanets

Department of Automation of Energy Processes

National Technical University of Ukraine “Igor Sikorsky

Kyiv Polytechnic Institute”

Kyiv, Ukraine

https://doi.org/10.31713/MCIT.2023.072

Anastasia Zakharchenko

Department of Automation of Energy Processes

National Technical University of Ukraine “Igor Sikorsky

Kyiv Polytechnic Institute”

Kyiv, Ukraine

zakharchenko.anastasia@lll.kpi.ua

Abstract—With the development of industries and

manufacturing requirements, the use of digital twin

technology is promising for increasing efficiency and

improving product quality. An important component of

digital twin implementation is the provision of tools for

modeling and simulation processes. In this study, a

solution based on the use of Python-based models and the

Controller software platform, which provides

communication between models and external elements of

digital twins and other IIoT solutions, was proposed as

such a toolkit. It defines the main approaches for creating

model, scenario, and function libraries, along with the

concept of implementing dynamic scenarios based on

JSON requests from the orchestrator. In addition, the

algorithm, the structure of the Controller, and its main

functionality are considered. The resulting solution takes

advantage of the Python and Node.js languages in

performing the relevant tasks and contains several

solutions that reduce traffic and workload on

communication systems, increase system reliability, scale

the system, etc.

Keywords—Digital Twins; Python; Node.js;

Modeling; Simulation; IIoT.

I. INTRODUCTION

Industrial automation systems are becoming
increasingly complex for various industries. The
requirements for energy efficiency, environmental
friendliness and reliability, and product quality are
rising [1]. The use of modern technologies, such as
artificial intelligence, data-driven technologies, digital
twins, and IIoT, is aimed at ensuring progress. Also, it
promotes the development of the modeling and
simulation field, not only in terms of studying the
object's behavior but also as a full-fledged tool
necessary to analyze the system's operation in near real-
time. Modeling is an integral part of what-if analysis,
decision support systems, energy consumption planning,
virtual sensors, etc., which are part of modern intelligent
user support systems and could be integrated directly
into control systems.

The use of cloud technologies is one of the main
concepts of IIoT and the development of digital twins,
allowing the storage, processing, and transmission of
huge amounts of data generated by sensors and services
[2, 3]. The use of cloud computing and analytics makes
it possible to obtain detailed information about the state
of an object in real-time, using the computing power

required at the moment. Implementation of modeling
capabilities based on cloud applications allows the use
of their functionality as a service with the ability to
deploy the required number of modules.

Based on these conditions, this article investigates
the organization of Python-based mathematical model
simulation processes using the available tools of the
Node.js platform as a cloud service.

II. GENERAL CONCEPT

Developing highly detailed models of technological
processes or their elements and creating their computer
code representation raises the issue of implementing
research results into industry, incorporating them into
analytics, and dynamically comparing the performance
of certain equipment with the expected results. The
integration of computer models IIoT-based solutions
and the design of digital twins has led to the challenge
of developing a special software platform that manages
and coordinates modelling, analytics, etc.

For this purpose, IIoT and digital twin solutions will
be considered as a set of special modules or services that
are managed and synchronized by a special orchestrator
[3]. Thus, in this paper, we focus on the encapsulated,
independent part of the "orchestrator-computing
module" of a distributed system. Such separation allows
for improving the system's reliability, given that in case
of errors or loss of communication on one of the
modules, it does not cause the collapse of the entire
system.

There are a number of requirements for the model
Controller platform's development, which are based on
the specific conditions of our task and skills, as well as
questions about future project growth. These include:

 support for computer models created in Python;

 security of data transmission;

 project scalability;

 the ability to exchange data between platforms
and services;

 the ability to configure the platform according
to the user's objects and tasks;

mailto:zakharchenko.anastasia@lll.kpi.ua

Modeling, control and information technologies – 2023

 universality of solutions and the ability to
additionally use them to implement analytical
codes;

 support for real-time data transfer;

 control of calculations, logging, alarming and
reporting of possible errors.

Accordingly, certain functions are also distributed
between them (Fig. 1).

III. PYTHON-BASED MODELS

Different model types can be used to describe the
behavior of objects, including static and dynamic
mathematical models. At the same time, one object can
have several models that use different approaches,
accuracy, scale, etc. [4]. Thus, the platform can have a
library of object models, their elements, certain internal
processes, etc. Their combination enables modeling
more complex processes and creates a number of
possible scenarios. The models working is supported by
a library of additional functions, including data
conversion, transmitting to other software applications,
averaging, related Python libraries and modules, post-
processing etc. (Fig. 2). In particular, the related NumPy
and SciPy modules can be included.

The model library is a set of classes that contain the
mathematical description of an object or its element and

functions that allow one to calculate static and dynamic
models depending on the request. When a particular
query is executed, the orchestrator launches the
corresponding modeling script, which may include a
certain arrangement of elements from the class library
and function library. As a first approximation, such
scenarios were written statically as separate Python
scripts.

A special type of scenario is real-time work based on
the Mixed Discrete-Continuous Simulation approach [5]
and employing a fixed-time algorithm. In general, the
algorithm is described in Fig. 3.

Although this algorithm and the static description of
scenarios have shown a stable operation, to implement
modularity and integration of Digital Twin functions,
automatic scenario layout, and improve system
flexibility, we observe the need to implement dynamic
scenario layout by the orchestrator's request. In this case,
the orchestrator forms the structure of the scenario in the
form of a JSON [3] with the specified initial conditions
of the system based on the information about the
models. During initialization, the Scenario class accepts
a set of model classes, their arguments, and a description
of its structure as a variable-length argument list
(**kwargs), creating a corresponding set of instances
and using sequential calls to their functions.

Figure 1. Functionality of Orchestrator and Controller sides

Figure 2. Basic structure of Python-based models realization

Modeling, control and information technologies – 2023

Figure 3. Algorithm of real-time process calculation

IV. NODE.JS-BASED PLATFORM

In developing software to support modeling
processes, Node-Red was initially considered to be a
tool for managing data flows [6]. However, due to the
need to use different environments and to avoid conflicts
between specific environment nodes related, for
example, to their updates, as well as the necessity to
install additional software, organize access to the file
system, etc. it was decided to use node.js as the main
platform for developing a universal platform.

In the proposed solution the MQTT broker is used to
communicate between the Controller and the
Orchestrator and to transmit data further to the target
destination. Each Controller has its own unique
identifier and monitors a specific topic for the presence
of commands addressed to it. After receiving a message,
the Controller evaluates the correctness of the received
command in accordance with the functionality allowed
by the platform deployment, the list of accounting
objects in the instance library, the required models and
analytical functions in the library, and the availability of
the necessary arguments for them. If there are conflicts
between requests and the Controller's capabilities, it
returns an error with a corresponding message that is
logged by the orchestrator. Otherwise, the
corresponding script is launched as a child process, the
results of which are returned as a ready-to-send JSON
message to the Data Sender and sent via the MQTT
Client (Fig. 4). The use of centralized data transfer
allows you to separate the calculation process and
reduce the number of clients for the MQTT broker
compared to direct access to communication tools by
Python script. This enables additional data verification
before sending and the ability to save work results in
case of a connection loss.

The Controller manages its instance library, which
contains the main design characteristics of equipment
and processes that do not change over time and are
necessary for modeling. The purpose of this library is to
reduce traffic between elements of a branched system
and to keep track of objects that are within the area of
responsibility of a particular Controller.

One object instance could be duplicated in the
libraries of several separate Controllers, which will
allow the Orchestrator to distribute the computing
workload more evenly and improve the reliability of the
distributed system by using redundancies in case of a
loss of functionality or communication of one of the
platforms.

V. FUTURE STEPS

The proposed system has a number of conceptual
solutions that form the basis and, in our opinion, are
prospective for further research. The following studies
focus on optimizing the performance of computational
codes and continuing work on dynamic scenario
composition to develop a single general approach to
describe heterogeneous object models. Also, we are
working to expand the library of models and analytical
functions for conducting experimental studies on real
objects.

In addition to the direct improvement of the system
itself, it is planned to develop solutions for integrating
the work results into control systems to obtain practical
benefits and evaluate them in the field.

VI. CONCLUSION

In this paper, we considered approaches to the
realization of the modeling and simulation of processes
as a separate module that can be used as a service for
various IIoT solutions and the implementation of digital
twin functions. The proposed solutions have a modular
nature, which enables them to distribute traffic, provide
high response speeds, and parallelize information flows.
They allow for high reliability of the developed system
in case of off-design errors, loss of communication or
system performance due to redundant computing
capabilities on other platforms, data storage until the
ability to transmit data is restored, etc.

Figure 4. . Basic structure of Node.js-based Controller

Modeling, control and information technologies – 2023

The platform takes advantage of the Python and
Node.js languages to perform relevant tasks and
contains a number of solutions that reduce traffic and
the load on communication systems, such as organizing
centralized communication with an MQTT broker and
creating its own library of object instances.

The use of a distributed system for modeling objects
has high prospects. Therefore, we are planning to
continue research in the area of optimizing
computational loads, developing a model library, and
integrating the results into control systems.

REFERENCES

[1] Z. Gao, “Special Issue on Modelling, Monitoring, Control and
Optimization for Complex Industrial Processes,” Processes,
2023. 10.3390/pr11010207.

[2] K. Agalianos, S. Ponis, E. Aretoulaki, G. Plakas, O. Efthymiou,
“Discrete Event Simulation and Digital Twins: Review and

Challenges for Logistics,” Procedia Manufacturing, vol. 51(2),
2020, 1636–1641. 10.1016/j.promfg.2020.10.228.

[3] G. De Giacomo, D. Ghedallia, D. Firmani, F. Leotta, et al, “IoT-
based Digital Twins Orchestration via Automated Planning for
Smart Manufacturing,” Workshop on Generalization in
Planning (GenPlan), 2021.

[4] U. Dahmen and J. Rossmann, “Experimentable Digital Twins
for a Modeling and Simulation-based Engineering Approach,”
2018 IEEE International Systems Engineering Symposium
(ISSE), Rome, Italy, 2018, pp. 1–8, doi:
10.1109/SysEng.2018.8544383.

[5] N. Karanjkar and S.M. Joshi, “A Python-Based Mixed Discrete-
Continuous Simulation Framework for Digital Twins,” In:
International Conference on Simulation and Modeling
Methodologies, Technologies and Applications. Cham: Springer
International Publishing, 2021, pp. 204–223.

[6] C. Steinmetz, G.N. Schroeder, A. Binotto, S. Panikkar et al,
“Digital Twins modeling and simulation with Node-RED and
Carla,” IFAC-PapersOnLine, vol. 55(19), 2022, pp. 97–102.
https://doi.org/10.1016/j.ifacol.2022.09.190.

