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Abstract—Solitary waves in the “shallow water” 

environment are considered and approximate approach to 

calculation and prediction of trajectories of these waves is 

proposed. We use an approach which was developed in 

recent years and was called the T-representations method. 

This method allows to move away from the exact solutions 

of the corresponding systems of differential equations and 

construct the trajectory approximately, in fact estimating 

only the point of maximum of the wave amplitude and its 

displacement. An appropriate mathematical simplification 

makes efficient computer simulations possible. In recent 

years, software packages have been actively used to 

monitor and predict a number of dangerous natural 

phenomena, such as Earth Alerts, Pacific Tsunami 

Warning System, Wave Monitoring Sites and others. But 

these systems do not take solitary waves into account. 

Using our approach, it is possible to refine the parameters 

of solitary waves in a specific environment, investigate 

whether such waves exist there at all and create functions 

taking into account solitary waves in monitoring systems. 

Keywords—solitary wave; shallow water; T-

representation; trajectory prediction; software. 

I.  INTRODUCTION  

Software packages containing prediction modules 
that use the properties of localized soliton-like waves 
have been actively developed [12]. In this case, 
localized soliton-like perturbations are considered in 
various aspects. In the study of seismic processes [15, 
16] for example, a separate wave can be considered as a 
generator of seismic shock, if it passes through the zone 
of accumulation of seismic energy. A similar effect can 
occur when several waves hit an area at the same time, 
because then there may be cracks in the earth's crust 
and, accordingly, seismic shocks (such an effect 
occurred, for example, in an earthquake in Fukushima 
Prefecture, Japan in 2016). In such cases, it is important 
to identify the soliton and predict its trajectory. 
Information about the trajectories of isolated waves and 
the nature of their movement is of great practical 
importance in cases where the isolated waves 

themselves pose a danger (such as a tsunami) [1, 2]. If 
the soliton occurs on the surface of water, it can also be 
dangerous, for example, in the case of the so-called 
killer wave, studied in the MaxWave project [1]. 
Therefore, the study of the trajectories of localized 
waves is a very important task. 

The problem of modeling the processes of origin and 
propagation of isolated waves has several aspects, in 
particular, an analytical description of the wave profile 
and the presence of a number of specific properties of 
soliton [3 – 7], which are guaranteed by some methods 
at the stage of their application and do not require 
further study. The presence of such methods determines 
their complexity. Mathematical models that describe the 
propagation of isolated waves are divided into two 
classes: integrated and non-integrated using the method 
of the inverse scattering problem [2 – 7, 10, 11] in 
collisions they retain their characteristics and there is 
only a phase shift. Many papers have shown that in 
integrated models localized waves behave like particles. 
This fact has been confirmed in numerous experiments 
in which plasma waves, liquid with gas bubbles, 
stratified liquid and electromagnetic waves have been 
studied. At the same time, for systems that do not 
integrate using the inverse scattering problem, a number 
of other effects occur, including radiation of nonlinear 
wave trains, splitting of individual waves and formation 
of new soliton-like waves, merging of several waves and 
formation of a new series of elastic reflections. 

At the same time, the wave profile may change over 
time, then such a wave will no longer be a soliton in the 
classical sense, but may have soliton properties that 
require further study. Soliton solutions of equations 
considered in the framework of the structural-
phenomenological approach, for example, are isolated 
partial cases of solutions and do not make it possible to 
solve the problem of formation of a separate wave from 
an arbitrary initial perturbation. The use of δ-solitons in 
the asymptotic case allows you to ignore the shape of 
the wave profile. However, general functions as models 
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of real physical phenomena have a number of 
disadvantages, including infinity, specific mathematical 
content of derivatives, and others. 

The analytical description of isolated waves in 
multidimensional cases is especially problematic now 
[2]. Even for a well-studied system of equations such as 
"shallow water" [1, 14], periodic analytical solutions 
have only recently been found and the author does not 
know the methods of analytical study of isolated waves. 

II. T-FORMS FOR THE SHALLOW WATER 

ENVIRONMENTS 

A number of approaches to finding soliton solutions 
of the corresponding differential equations are known 
today. The method of the inverse scattering problem 
plays a fundamental role. There is an infinite number of 
differential equations that can be differentiated using 
this method. However, the method does not exhaust all 
the equations that soliton solutions can have. In addition, 
there are other methods that allow us to find both exact 
and approximate soliton solutions of differential 
equations. However, the corresponding methods are 
often special in nature and are effective only for a 
certain class of equations. Most of them relate to the 
one-dimensional case.  

In recent years, in order to constructively study the 
trajectories of localized soliton-like perturbations, a 
slightly different approach has been proposed, called the 
T-representation method. This method has approximate 
variants when the solutions are Gaussian and can easily 
be extended to multidimensional cases. 

In [12], a method for finding solutions of equations 
of motion is presented in the form of: 
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),( ba  is  a measure defined on a set of intervals 

},],.{[ nRbaba  , ( 0),(  if   ), )(1 t , 

)(2 t , …, )(tm  are functions that determine the 

components of the amplitude of the corresponding 
perturbations,  is a parameter that determines the  

localization of the perturbation, )(~
1 tx , )(~

2 tx ,…, )(~ txn  

are functions that determine the trajectory of the point of 
maximum perturbation. 

The solution in the form (1) defines a localized 
wave, the maximum of which is at a point

))(~),...,(~),(~( 21 txtxtx n . Note that in the case of an 

arbitrary measure  , in form (1) we can represent an 

arbitrary solution that has the character of a unimodal 
isolated wave, the shape of which does not change with 
time. The measure   determines the form of 

perturbation. We can consider a more general case when 

the functions (.)~
ix depend not only on time but also on 

spatial coordinates ),,...,,(~)(~
21 txxxxtx nii   

Shallow water equations are of great practical 
importance because they describe large-scale 
atmospheric and ocean currents, particularly in 
midlatitudes. In Cartesian coordinates, they have the 
form [15]: 
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where u, v are components of the velocity vector, h is 
the depth of the liquid layer above the flat bottom; f is 
the Coriolis parameter (rotation frequency), g is the 
acceleration of free fall. The approximate model (2) is 
obtained from Euler's equations [14] of an ideal fluid 
under the following assumptions: the ratio of the 
characteristic vertical scale of the flow to the 
characteristic horizontal scales is much less than 1; the 
density of the liquid became; the pressure in the liquid is 
hydrostatic at depth; the axis of rotation coincides with 
the vertical axis z. 

Note that the shallow water equations are usually 
solved by numerical methods due to significant 
difficulties in obtaining analytical solutions. In recent 
years, group theory methods have been used to analyze 
shallow water-type equations [13 – 15]. In particular, 
with the help of group analysis methods the Lie algebra 
in the absence of rotation is constructed, in [14] a 
system of subalgebras containing 179 representatives is 
constructed. On the basis of the corresponding algebra, 
periodic exact solutions are constructed, which can be 
interpreted as pulsations of a liquid under the action of 
gravity or Coriolis.Numerical methods for solving 
shallow water equations show that there are solutions 
that simulate isolated waves, such as circular tsunami 
waves. 

The system of shallow water equations can easily be 
generalized to the case of polytropic gas flow, which is 
considered in the barotropic approximation. The motion 
of a compressible viscous gas can be conveniently 
studied in the polar coordinate system.  

Such problems include a number of applied 
engineering and geophysical problems, including the 
study of atmospheric phenomena on a planetary scale, 
the study of astrophysical objects associated with the 
motion of matter around the center of gravity, including 
the gas disks of galaxies. The shallow water type 
equations in the polar coordinate system will look like 
this: 
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where ),,( tru  , ),,( trv   are radial and azimuthal 

components of gas velocity, respectively, ),,( tr   is 

surface density of the gas disk, ),,( trФ   is potential 

that describes the action of an external force, DB,  are 

positive constants. Note that system (3) is quasilinear. 

Based on the above-described method of T-
representations, the vector-function of perturbations  
will be found in the form: 

 ),,,()(),,( 01  trttrf f ,  (4) 
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We see that in this case the perturbation is a single 
wave, and the point of maximum perturbation moves 
along the trajectory described in the polar coordinate 

system by the functions )(~ tr and )(~ t . 

III. ANALISIS OF THE TRAJECTORY OF LOCALIZED 

WAVES 

As a result of substituting (4) into the system (3) and 
taking into account the properties of the function g(), we 
can obtain systems: 
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Let's analyze the equations containing )('~ tr . Then 

we receive conditions: 
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From last equation we get: 
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Comparing (8) and (9) we see that 3s . This 

result is very important because it corresponds to the 
case when the gas is in a state of ionized plasma. In 
addition, the ratio (9) shows that the surface density 
perturbation is negative. 

Let us analize equations for )('~ t  in systems (5)-(7). 
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).,,,(
)(

),,,()(
2

)(
)(

0

00














tr
r

t

trt
rtr

t

v

vv





 

From last equation we have: 
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We get equation (9). 

Thus, we have system : 
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We will consider the system in t he area 
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Similarly, we can write other schedules. Then we get 
the following system, which will be executed with 

accuracy ))(( 1/11 gO : 
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Taking into account last equations and condition 
D=0 we get: 
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IV. CALCULATION OF THE TRAJECTORIES OF 

LOCALIZED PERTURBATIONS IN THE MATHCAD 

ENVIRONMENT 

We will solve the system (11) in Mathcad 14.0 (see 
Fig.1.) In this case, we will simulate two solitons that 
have different velocities at the initial time. The initial 
conditions here are as follows. The first two values 
specify the radial and azimuthal components of the 
soliton velocity, the other two values are the initial 
coordinates of the soliton in the polar system, 
coordinate, radius and angle. We will consider the 
surface density as a function that depends only on the 
radius and choose it in the form: 
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The simulation result is shown on Fig.3. The two 
solitons (blue and red trajectories) start from the points 
(0,380), (0,390), the azimuthal components are the 
same, but the radial ones are different and equal to 5 and 
54, respectively. Interestingly, the amplitude of 
oscillations does not change, as does the frequency. This 
can be seen in the graph of Fig.2. 



Modeling, control and information technologies – 2023 

0 200 400 600 800

r1 x( )

r x( )

C x( )

C1 x( )

C2 x( )

C3 x( )

fi1 x( ) fi x( ) x

 

Figure 1.  Example of Mathcad program for the system (11) 

 

Figure 2.  Trajectories of the two solitary waves 

Initial condition for the waves are: first soliton (blue 
trajectiry on Fig.3): y0(0)=5, y1(0)=180, y2(0)=0, 
y3(0)=380, second soliton(red trajectory on Fig.3): 
y0(0)=58, y1(0)=180,y2(0)=0, y3(0)=390,T1=16.28, 
Eps=0.2, R=185, R1=285, R2=385, R3=485. 

In this case, the second soliton (red), which had a 
higher initial velocity, moves along a curvilinear 
trajectory, approaching a circle where the density has a 
local maximum, intersects it, the trajectory is refracted 
like a ray of light and then becomes virtually rectilinear. 
We see that for a large T the soliton moves away from 
the center, asymptotically approaching the motion along 
some straight line, moving away from the center. 

The corresponding behavior of a slower soliton can 
be interpreted in two ways: approximation to the region 
of maximum density and repulsion from the region of 
minimum. Note that we actually have an antisoliton 
here, a negative perturbation of density. Since the 
density changes continuously, the soliton is smoothly 
knocked out. If we had a clear boundary of the regions 
of density change, we would obviously have the 
phenomenon of embossing like Snelius's law. Thus, the 
soliton in a continuous medium will move in the 
direction of maximum density in areas where it is a 
smooth function and will be reflected in the presence of 
a sharp change in density. 

Let us consider another example, when the density 
has circular areas with small values, the constants in 

(13) are: ,285,385,15,4,0,11 1  RRlkBC i

.8.9,185,4852 3  iaRR  

The graph of the function (13) is on Fig. 3. The 
initial conditions for the numerical experiment: first 
soliton (blue trajectiry on Fig.5): y0(0)=5, 
y1(0)=180,y2(0)=0, y3(0)=380, second soliton(red 
trajectory on Fig.4) : y0(0)=35, y1(0)=50,y2(0)=0, 
y3(0)=430. 

 

Figure 3.  The graph of the surface density 

 

 

Figure 4.  Example of the solitary wave trajectory 

Other parameters are the same as in the previous 
example. On the Fig.5 we see that antisolitons at the 
corresponding initial velocities cannot penetrate regions 
with low density and are reflected in the same way as 
light quanta. The red antisoliton is reflected from both 
circular regions. This behavior of negative perturbations 
of the medium (localized regions of lower density) is in 
good agreement with the general properties of solitons, 
which are known to repel as elastic solids. Having a 
computer program, we can easily investigate the 
trajectories of solitary waves under any initial 
conditions. 

V. CONCLUSIONS 

Thus, the paper considers the modeling of localized 
soliton-like perturbations in media whose characteristics 
are described by equations such as mile water. The 
specificity of the approach used here to study the 
trajectories of the corresponding perturbations is the 
assumption of the exact solutions of the corresponding 
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systems of equations and the use of the approximate 
approach. 

As a result of using the method of T-representations, 
a system of differential equations is obtained, from 
which functions are obtained that describe the 
trajectories of localized waves. The system is solved 
using the Mathcad environment. It is shown that the 
corresponding software package is effective for cases 
when function compositions are used. 

It is shown that the corresponding software package 
is effective for cases when function compositions are 
used. Solutions for different cases of surface density are 
found. It is shown that there are only antisolitons in the 
medium that are reflected from voids like light quanta, 
although the laws of reflection are essentially nonlinear. 
Theoretical analysis has shown that solitons occur in 
precipitation when the gas is in a state of ionized 
plasma. The obtained results correlate well with 
experimental studies, which confirms the adequacy of 
the applied approach to modeling and the possibility of 
using it for the development of wave monitoring 
software. 
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