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Abstract – It has been observed that the number of 
accidents due to technical malfunctions in the engines of 
drone-type unmanned aerial vehicles during mass 
production has risen significantly. When one of the 
aircraft’s engines fails, the remaining engines must 
compensate to maintain the mission. This research focuses 
on the challenges of controlling hexacopter-type unmanned 
aerial vehicles with six engines in the event of a single 
engine failure. The paper outlines the mathematical 
principles for managing the hexacopter’s engines so that it 
can continue operating as it did before the malfunction. 
The findings indicate that the limited power of the 
remaining engines may not be enough to sustain the mission 
without adjustments. 

Keywords – unmanned aerial vehicle, hexacopter, 
faulty engine, straight trajectory, control 

I. INTRODUCTION

The rapid development of microelectronics has 
recently spurred the creation of various types of 
unmanned aerial vehicles (UAVs). Depending on the 
characteristics of the tasks they perform and the 
operational requirements, these UAVs are equipped with 
different devices (such as photo-video cameras, brackets 
for suspending loads, relays, weapon mounts, etc.). 
However, in all cases, the UAV’s primary task is to fly 
along the designated route to successfully complete the 
assigned mission.  

As the usage of UAVs increases, so does the 
frequency of accidents caused by malfunctions in the 
engine-control system. One of the most common issues 
encountered is the failure of one or more engines during 
flight. Due to the widespread use of multi-engine drones, 
various types of these drones have become particularly 
popular, depending on their intended purpose and the 
demands placed on them [1-4]. 

Unlike single-engine drones, engine failure in multi-
rotor devices can lead to safety concerns. Numerous 
published articles suggest addressing this issue by 
redesigning the control law or adjusting the control power 
[5, 6]. However, this approach is difficult to implement, 
as altering the control power of the engines often requires 

additional measures, including the integration of extra 
equipment and devices. 

Most scientific and technical literature dedicated to 
this topic primarily focuses on quadcopters with only one 
engine failure. These studies mainly explore flight 
control based on the Euler or Krylov angles for 
orientation, but there is insufficient material on how to 
control hexacopters when one engine fails, using 
quaternion theory methods to describe orientation. 

In this research, the possibility of controlling a 
hexacopter in the event of one engine failure, under 
conditions of limited engine power, is examined (Figure 
1). The proposed approach can help ensure proper control 
when engine malfunctions occur and increase the 
likelihood of successfully performing an emergency 
landing maneuver. 

Figure 1.  General description of Əqrəb 5.0. 

II. PROBLEM STATEMENT
When examining the case where there are no 

limitations on the hexacopter's engine power (referred to 
as the "normal condition" below), it becomes evident that 
even if two symmetrically positioned engines (Figure 2) 
fail, the hexacopter can still be controlled along a straight 
trajectory. The failure of one engine refers to a scenario 
where one out of the six engines on the hexacopter is not 
functioning. In such cases, the engine symmetrically 
positioned relative to the center of the hexacopter is 
typically turned off. 

It is clear that when the number of engines decreases 
from six to four, it becomes necessary to increase the 
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power of the remaining engines. When the hexacopter's 
flight speed is low - in other words, when the engines are 
operating at lower power—turning off one symmetric 
engine and increasing the power of the remaining four 
may be sufficient to maintain the required speed. 
However, at higher flight speeds, maintaining that speed 
with only four engines may not be possible due to the 
existing power limitations. 

This raises the question of whether, in a hexacopter 
with engine power limitations, the failure of one engine 
can be compensated for by the remaining five engines. 
This issue is investigated in the article. Below, the 
mathematical formalization and solution of the problem 
are presented. 

Figure 2.  A schematic representation of a hexacopter 

III. KEY CONDİTİONS FOR ROUTE FLİGHT CONTROL

When writing the mathematical model for controlling
a UAV, two coordinate systems are often considered. 
These include the inertial coordinate system 𝑂𝑂𝐺𝐺𝑋𝑋𝑋𝑋𝑋𝑋 
attached to the Earth, with its origin 𝑂𝑂𝐺𝐺  fixed at a specific 
point on the Earth's surface, and the local coordinate 
system 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 attached to the hexacopter, with its origin 
located at the center of gravity of the hexacopter, used to 
determine its orientation in space (Figure 3).

Figure 3.  The local and inertial coordinate systems. 

We will assume that the 𝑂𝑂𝑂𝑂 axis lies along the first 
arm of the hexacopter, the Oz axis is perpendicular to the 
𝑂𝑂𝑂𝑂 axis within the plane where the arms are positioned, 
and the 𝑂𝑂𝑂𝑂 axis is directed along the symmetry plane, 
perpendicular to the 𝑂𝑂𝑂𝑂𝑂𝑂 . It is considered that in the 
horizontal stationary state, the 𝑂𝑂𝑂𝑂  axis is directed 
upwards, and the 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂  system is a positively oriented 
coordinate system. 

For the hexacopter to fly along a straight line relative 
to the Earth’s coordinate system 𝑂𝑂𝐺𝐺𝑋𝑋𝑋𝑋𝑋𝑋 , it is first 

oriented appropriately by adjusting the rotational speeds 
of its propellers, achieving the necessary pitch. Once this 
orientation is established, the hexacopter is controlled 
along the desired trajectory using the engines, which 
continue to operate at the appropriate rotational speeds.  

It should be noted that this article does not address the 
calculation of propeller rotation speeds for changing the 
UAV’s orientation. 

 The UAV's flight along the straight segments of the 
route differs mainly in terms of direction and how the 
altitude changes along these segments. Therefore, to 
determine the solution principle for finding the control 
parameters of the flight along the route, each straight 
segment of the route can be considered separately.  

Therefore, without loss of generality, it can be 
assumed that the hexacopter is designed to fly at a 
specific speed along a straight line connecting two points, 
𝐴𝐴(𝑂𝑂𝑎𝑎 , 𝑂𝑂𝑎𝑎 , 0 ) and 𝐵𝐵(𝑂𝑂𝑏𝑏 , 𝑂𝑂𝑏𝑏 , 0), within a given plane. 

It should be noted that if the hexacopter had a tilt 
(roll), it would not be able to maintain a straight flight. 
The non-zero angle formed between the engine's 
rotational axis and the flight plane would generate a 
moment that would force the hexacopter to deviate from 
that plane. Additionally, the pitch of the hexacopter must 
be adjusted so that the thrust from the engines 
compensates for the combined forces of gravity and 
aerodynamic drag along the 𝑂𝑂𝐺𝐺𝑋𝑋 axis. 

This ensures the hexacopter remains on the intended 
straight path, avoiding deviations due to roll or 
misaligned thrust. 

As illustrated in Figure 1, the rotational axes of the 
engines in the examined type of hexacopters are aligned 
parallel to the 𝑂𝑂𝑂𝑂  axis and form a right angle with the 
𝑂𝑂𝑂𝑂𝑂𝑂  plane. For the hexacopter to progress along the 
designated  AB  trajectory, it must adjust its spatial 
orientation by an angle 𝜑𝜑 so that the thrust produced by 
the engines can counterbalance the gravitational force 
and the aerodynamic drag from the air. 

The value of angle 𝜑𝜑  is determined based on the 
hexacopter’s design (aerodynamic properties) and mass 
[7]. In this research, the angle a is assumed to be known. 

Therefore, it is necessary to determine the rotational 
frequencies 𝜔𝜔1, … ,𝜔𝜔6 of the engines in such a way that 
the UAV flies along a specific 𝐴𝐴𝐵𝐵 trajectory at a certain 
speed 𝑣𝑣0 = (𝑣𝑣𝑥𝑥 , 𝑣𝑣𝑦𝑦 , 0)  relative to the 𝑂𝑂𝑋𝑋𝑋𝑋𝑋𝑋  coordinate 
system, while maintaining a constant spatial orientation. 

Taking this into account in the hexacopter’s equations 
of motion, and in accordance with [7], the following can 
be written: 

⎩
⎨

⎧ −𝜔𝜔2
2 + 𝜔𝜔3

2 + 𝜔𝜔5
2 − 𝜔𝜔6

2 = 0,

𝜔𝜔12 −
1
2
𝜔𝜔2
2 + 𝜔𝜔3

2 − 𝜔𝜔42 +
1
2
𝜔𝜔5
2 − 𝜔𝜔6

2 = 0,

𝜔𝜔12 − 𝜔𝜔2
2 + 𝜔𝜔3

2 − 𝜔𝜔42 + 𝜔𝜔5
2 − 𝜔𝜔6

2 = 0,

 (1) 

�𝜔𝜔𝑖𝑖
2

6

𝑖𝑖=1

= 𝑓𝑓0. (2)
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Here𝑓𝑓0 = 𝑐𝑐𝐴𝐴|𝒗𝒗0|𝑣𝑣𝑧𝑧 + 𝑚𝑚𝑚𝑚 cos𝜑𝜑 , 𝑚𝑚  -hexacopter’s mass 
and 𝑐𝑐𝐴𝐴 - aerodynamic drag coefficient.  

Thus, the quantities 𝜔𝜔1, … ,𝜔𝜔6 that meet the proposed 
requirements must satisfy the system of equations (1)-(2). 

IV. ENSURİNG CONTROL İN NORMAL OPERATİNG MODE

Let’s assume that all motors of the hexacopter are 
functioning properly. In this case, we will investigate the 
determination of the quantities 𝜔𝜔1, … ,𝜔𝜔6 that satisfy the 
system of equations (1)-(2). 

For each 𝑘𝑘 denote 𝜔𝜔𝑘𝑘
2 as 𝜉𝜉𝑘𝑘, 𝑘𝑘 = 1, 2, … , 6. 

Thus, the system of equations (1)-(2) can be rewritten 
as follows: 

�

−𝜉𝜉2 + 𝜉𝜉3 + 𝜉𝜉5 − 𝜉𝜉6 = 0,
2𝜉𝜉1 − 𝜉𝜉2 + 2𝜉𝜉3 − 2𝜉𝜉4 + 𝜉𝜉5 − 2𝜉𝜉6 = 0,
𝜉𝜉1 − 𝜉𝜉2 + 𝜉𝜉3 − 𝜉𝜉4 + 𝜉𝜉5 − 𝜉𝜉6 = 0,
𝜉𝜉1 + 𝜉𝜉2 + 𝜉𝜉3 + 𝜉𝜉4 + 𝜉𝜉5 + 𝜉𝜉6 = 𝑓𝑓0.

 (3) 

As can be seen, equation system (3) is a linear system 
written with respect to six unknowns, and its rank is equal 
to four. Therefore, this system has infinitely many distinct 
solutions. 

To choose the most suitable solution from the set of 
possible solutions, in accordance with the essence of the 
problem, let's introduce the following optimality 
criterion: 

We seek to minimize the variation in the angular 
velocities of the motors, ensuring that the hexacopter 
operates efficiently and maintains stable flight.  

This optimality criterion can be formulated as a cost 
function that seeks to equalize or minimize the deviations 
in motor performance, ensuring the overall stability and 
balance of the hexacopter's movement along its intended 
trajectory. 

ℑ ≡��𝜉𝜉𝑖𝑖 − 𝜉𝜉𝑗𝑗�
2

𝑖𝑖≠𝑗𝑗

→ min, 𝑖𝑖, 𝑗𝑗 = 1, 2, … , 6. (4) 

The minimization of the ℑ   functional essentially 
requires that the values of 𝜉𝜉𝑖𝑖 and ultimately the rotational 
frequencies  𝜔𝜔𝑘𝑘

2   be as close to each other as possible. 
This requirement is justified by the fact that during the 
straight-line movement of the UAV, its motors should 
ideally be evenly loaded. 

From a mathematical perspective, this problem is one 
of conditional extremum. Various approaches can be 
applied to solve this problem [8]. In the course of the 
study, the Kuhn-Tucker method was applied [9-11]. The 
solution to the conditional extremum problem formulated 
by equations (3)-(4) yields the following result: 

𝜉𝜉1 =  𝜉𝜉2 =  𝜉𝜉3 = 𝜉𝜉4 =  𝜉𝜉5 =  𝜉𝜉6 ≈ 0,166𝑓𝑓0. 

Based on the obtained values of the 𝜉𝜉1, … , 𝜉𝜉6 
quantities, the following values are derived for the 
rotational frequencies of the propellers: 

𝜔𝜔1 = 𝜔𝜔2 = ⋯ =  𝜔𝜔6 ≈ 0,4�𝑓𝑓0. (5) 

Thus, for the hexacopter to fly in a straight line, it is 
first oriented appropriately by adjusting the rotational 
frequencies of the propellers to achieve the desired pitch. 
Subsequently, it is controlled along the trajectory 
according to the specified rotational frequencies (5). 

V. ENSURİNG CONTROL WHEN ONE OF THE ENGİNES 
FAİL 

When all engines are functioning normally, optimal 
control for straight-line flight is achieved by having all 
the propellers rotate at the same speed. Suppose one of 
the hexacopter's engines, for instance, the 6th engine, has 
malfunctioned.  

Without loss of generality, we assume the failure is in 
the 6th engine.  

In the case where there are no constraints on the 
rotational speeds of the remaining engines, the control of 
the hexacopter's movement has been studied in [5], 
showing that straight-line control is possible if 𝜔𝜔3 = 0. 

This raises the question: if the engine power is limited 
and the remaining engines cannot maintain the necessary 
rotational speeds, is it possible to control the hexacopter 
with the five remaining engines in the same manner? 

If a solution exists, it must satisfy all the minimums 
determined by each additional constraint imposed on the 
system. Clearly, the same result can be obtained if 
engines 2, 3, or 5 malfunction instead. 

If we consider the case where the 1st engine, rather 
than the 6th, fails, the system can be solved analogously, 
and again, we arrive at the conclusion that when the 
engines' power is limited, controlling the hexacopter with 
five engines is not possible [12].  

It should also be noted that the same results are 
obtained if the 4th engine fails. 

Thus, it can be concluded that under the given 
constraints, it is not feasible to control the hexacopter 
along a straight trajectory using only five engines. 

VI. СONCLUSİON

Research has shown that when one of the hexacopter's 
engines fails, it can still continue moving along its 
original trajectory using the other engines, except for the 
one symmetrically opposite to the failed engine. In this 
case, if there are no technical power limitations on the 
engines, it is necessary to increase the rotation speed of 
the propellers to maintain the previous flight speed. 

However, if there are power constraints, continuing 
along the trajectory would require a reduction in flight 
speed. Furthermore, it has been mathematically justified 
that under such power limitations, the shortage of power 
across four engines cannot be compensated by the fifth 
engine to maintain the hexacopter's previous speed along 
a straight-line trajectory. 
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