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Abstract –  This article examines the emergence of point 
spectra in discrete dynamical conflict systems and their 
role in belief formation within a society. By studying the 
structure and convergence of conflict trajectories to limit 
states, we analyze the conditions under which a discrete 
point spectrum emerges. A mathematical model is 
developed to describe the formation of individuals' beliefs 
through conflict interaction. The study focuses on systems 
where the number of possible beliefs is limited, examining 
both the aggregation of individual beliefs and the 
constraints that arise with multiple beliefs. The results 
show that while two beliefs can always be aggregated, the 
presence of three or more leads to more complex dynamics, 
where only a pair of individuals can be grouped by a 
common belief. The results provide insights into the 
formation of belief clusters in societies and offer a 
framework for understanding informational influence on 
conflict patterns. 

Keywords – dynamical conflict system, conflict 
transformation (interaction), point spectrum, stochastic 
vector. 

Many mathematical models describe the process of 
beliefs formation and dissemination in society (for 
example, see [1]-[4]). Such models are very relevant for 
studying the dynamics of social networks, political 
systems, and other social structures where groups of 
individuals interact and gradually come to a common 
opinion. They allow modeling decision-making 
processes, including the influence of trust, limited 
confidence and mutual influence on the formation of 
collective opinion. These models are also applicable in 
areas such as the management of complex systems, 
economics and even in technologies where consistency 
between different components of the system is required. 

For example, in [4], a mathematical model is 
proposed that describes the process of reaching 
consensus in systems with interacting agents. It 
examines the behavior of agents when making decisions 
in systems with two or more alternatives. Special cases 
of interaction between two agents and large groups are 
studied, and generalizations are given for cases with 
several alternatives. The key aspect is the gradual 
convergence of agent opinions through interaction, 
which leads to consensus. 

This article proposes a method for constructing such 
models based on the concept of a conflict dynamic 
system and the interpretation of the phenomenon when a 
continuous spectrum is concentrated in a discrete 

spectrum. The study of the proposed belief model is 
carried out in terms of the structure of the point spectrum 
in time-limited events in discrete dynamic conflict 
systems of the form 

{𝜇𝜇𝑡𝑡 , 𝜈𝜈𝑡𝑡}
∗
→ {𝜇𝜇𝑡𝑡+1, 𝜈𝜈𝑡𝑡+1}, 𝑡𝑡 = 0, 1, …, 

where the probabilistic measures 𝜇𝜇𝑡𝑡  and 𝜈𝜈𝑡𝑡  are 
associated with stochastic matrices describing the states 
of a pair of alternative opponents, and ∗ denotes a non-
commutative transformation that models conflict 
interaction between the opponents. 

The spectral properties of the limiting measures 
𝜇𝜇∞ = lim

𝑡𝑡→∞
𝜇𝜇𝑡𝑡, 𝜈𝜈∞ = lim

𝑡𝑡→∞
𝜈𝜈𝑡𝑡 have already been studied in 

several papers [5]-[14]. In particular, it has been 
established that, in the general case, the distributions of 
the limiting measures𝜇𝜇∞  and  𝜈𝜈∞  are pure singularly 
continuous and have a fractal structure (see [5, 6, 10]). 
In [14], it was shown that the class of singularly 
continuous limiting distributions forms a set of full 
measure in the space of all limiting states of dynamical 
systems of this type. Point, particularly discrete, limiting 
spectrum can only arise in specific cases, with very rapid 
(exponential) local concentration of the approximating 
distributions 𝜇𝜇𝑡𝑡 and 𝜈𝜈𝑡𝑡 (see [11]). 

The construction of an abstract model of a dynamical 
conflict system (see [13]) is determined by fixing three 
objects: Ω, ℳ𝑠𝑠𝑠𝑠(Ω), ∗  specifically, the space Ω,  the 
family of measures ℳ𝑠𝑠𝑠𝑠(Ω)  and the conflict 
transformation ∗. Here,  Ω refers to any space in which 
the conflict between opponents unfolds. Physically, this 
repre sents a territory for the distribution of a certain 
resource. Mathematically, in the simplest case, Ω is the 
interval [0,1] with the Lebesgue measure. It is important 
that the space Ω allows for the procedure of structural 
subdivision into subsets, as described further.  

In the class of all structurally similar measures 
ℳss(Ω) on the space 𝛺𝛺 with a fixed primary measure 𝜆𝜆 
we define three subclasses:  𝜇𝜇 ∈ ℳpp– measures with a 
purely point spectrum, 𝜇𝜇 ∈ ℳac – the measures are 
absolutely continuous with respect to 𝜆𝜆 , and the 
measures 𝜇𝜇 ∈ ℳsc – are singularly continuous with 
respect to 𝜆𝜆 . Each structurally similar measure, μ ∈
ℳss, belongs to only one of the subclasses: ℳac, ℳpp 
or ℳsc, which do not intersect. 
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At the initial moment of the discrete time 𝑡𝑡 =  0, a 
pair of alternative opponents, denoted by A and B, 
choose strategies for distributing the statuses of their 
presence in the Ω space, as in a territory that is divided 
into separate regions: 

Ω =  �Ω𝑖𝑖0

𝑛𝑛

𝑖𝑖0=1

, 2 ≤ 𝑛𝑛 < ∞. 

The starting strategies of the opponents are fixed by 
sets of numbers: 𝑝𝑝𝑖𝑖0 ≥  0 for A and 𝑟𝑟𝑖𝑖0 ≥  0 for B, the 
values of which characterize the statuses of the 
opponents in each of the regions Ω𝑖𝑖0  with weight 𝜆𝜆𝑖𝑖0 . We 
assume that these values have the meaning of the 
probabilities of the presence of opponents A and B in 
Ω𝑖𝑖0 , i.e. 𝑝𝑝𝑖𝑖0 ≔ 𝐏𝐏(A ↾ Ω𝑖𝑖0) ,  𝑟𝑟𝑖𝑖0 ≔ 𝐏𝐏(B ↾ Ω𝑖𝑖0) , where 
the symbol ↾ denotes the presence of the opponent in the 
region.  

Therefore, at the moment 𝑡𝑡 =  0, the strategy of each 
of the opponents is fixed by the corresponding stochastic 
vector, 

𝐩𝐩0 = (𝑝𝑝01, … , 𝑝𝑝0𝑖𝑖 , … , 𝑝𝑝0𝑛𝑛), 𝐫𝐫0 = (𝑟𝑟01, … , 𝑟𝑟0𝑖𝑖  , … , 𝑟𝑟0𝑛𝑛), 

�𝑝𝑝0𝑖𝑖

∞

𝑖𝑖=1

=  �𝑟𝑟0𝑖𝑖

∞

𝑖𝑖=1

= 1. 

Next, we will assume that in the general case the 
coordinates 𝑝𝑝𝑖𝑖0 ≡ 𝑝𝑝0𝑖𝑖 , 𝑟𝑟𝑖𝑖0 ≡ 𝑟𝑟0𝑖𝑖 are strictly positive and 
different: 

𝑝𝑝𝑖𝑖0, 𝑟𝑟𝑖𝑖0 > 0, 𝑝𝑝𝑖𝑖0 ≠  𝑟𝑟𝑖𝑖0, (𝐩𝐩0, 𝐫𝐫0) = �𝑝𝑝𝑖𝑖0
𝑛𝑛

𝑖𝑖=1

𝑟𝑟𝑖𝑖0 ≠ 1.      (3) 

In the general case, the measures 𝜇𝜇𝑡𝑡 = 𝜇𝜇𝑃𝑃𝑡𝑡 , 𝜈𝜈𝑡𝑡 = 𝜈𝜈𝑅𝑅𝑡𝑡, 
𝑡𝑡 = 1, 2, …, which are constructed iteratively by 𝜇𝜇𝑃𝑃𝑡𝑡−1 , 
𝜈𝜈𝑅𝑅𝑡𝑡−1 according to this rule. The elements of the first 
𝑘𝑘 ≤  𝑡𝑡 columns of the matrices 𝑃𝑃𝑡𝑡, 𝑅𝑅𝑡𝑡 are given by the 
coordinates 𝑝𝑝𝑖𝑖𝑖𝑖 ≡ 𝑝𝑝𝑖𝑖𝑖𝑖, 𝑟𝑟𝑖𝑖𝑖𝑖 ≡ 𝑟𝑟𝑖𝑖𝑖𝑖, 𝑖𝑖 ∈ 1,𝑛𝑛����� by vectors 

𝐩𝐩0,𝐩𝐩1, … ,𝐩𝐩𝑖𝑖,       𝐫𝐫0, 𝐫𝐫1, … , 𝐫𝐫𝑖𝑖,  

the coordinates of which are determined according to 
the formulas: 

𝑝𝑝𝑖𝑖𝑖𝑖 ≡ 𝑝𝑝𝑖𝑖𝑘𝑘𝑖𝑖 = 𝑝𝑝𝑖𝑖𝑖𝑖−1 ∙
1 − 𝑟𝑟𝑖𝑖𝑖𝑖−1

1 −  𝜃𝜃𝑖𝑖−1
, 

𝑟𝑟𝑖𝑖𝑖𝑖 ≡ 𝑟𝑟𝑖𝑖𝑘𝑘𝑖𝑖 = 𝑟𝑟𝑖𝑖𝑖𝑖−1 ∙
1 − 𝑝𝑝𝑖𝑖𝑖𝑖−1

1 −  𝜃𝜃𝑖𝑖−1
,  (4) 

𝜃𝜃𝑖𝑖−1 ≔�𝑝𝑝𝑖𝑖𝑖𝑖−1𝑟𝑟𝑖𝑖𝑖𝑖−1
𝑛𝑛

𝑖𝑖=1

. 

The above-described procedure of initial measures 
sets one of the possible transformations for describing 
successive acts of conflict interaction between 
opponents in discrete time. We denote this 
transformation by ∗ . It generates trajectories of a 
dynamic conflict system, 

�
𝜇𝜇𝑡𝑡−1  ≡ 𝜇𝜇𝑃𝑃𝑡𝑡−1
𝜈𝜈𝑡𝑡−1  ≡ 𝜈𝜈𝑃𝑃𝑡𝑡−1

�
∗
→ �

𝜇𝜇𝑡𝑡  ≡ 𝜇𝜇𝑃𝑃𝑡𝑡
𝜈𝜈𝑡𝑡  ≡ 𝜈𝜈𝑃𝑃𝑡𝑡

� , 𝑡𝑡 = 1,2, …   (7) 

the states of which are fixed by a pair of measures 
associated with the corresponding stochastic matrices.  

In the case 𝐩𝐩0, 𝐫𝐫0 ∈ ℝ+,1
𝑛𝑛=2  both measures 𝜇𝜇∞, 𝜈𝜈∞ 

associated to the limit matrices 𝑃𝑃∞,𝑅𝑅∞ are purely point, 
𝜇𝜇∞, 𝜈𝜈∞ ∈  ℳpp. In other case, when 𝐩𝐩0, 𝐫𝐫0 ∈ ℝ+,1

𝑛𝑛>2, one 
of the limit measures 𝜇𝜇∞, 𝜈𝜈∞ will be purely point, 𝜇𝜇∞ ∈
 ℳpp, or 𝜈𝜈∞ ∈  ℳpp if there exists only one index 1 ≤
 𝐢𝐢 ≤  ∞  for vector 𝐩𝐩0  , or 1 ≤  𝐣𝐣 ≤  ∞  for vector 
𝐫𝐫0,such that one of the inequalities holds, respectively: 

 𝑝𝑝𝐢𝐢0 >  𝑟𝑟𝐢𝐢0     𝑜𝑜𝑟𝑟      𝑝𝑝𝐣𝐣0 <  𝑟𝑟𝐣𝐣0  (8) 

At the same time, if 𝜇𝜇∞ ∈  ℳpp, then 𝜈𝜈∞ ∈  ℳsc and 
vice versa if 𝜈𝜈∞ ∈  ℳpp, then 𝜇𝜇∞ ∈  ℳ𝑠𝑠𝑠𝑠. If none of the 
inequalities (8) holds, then both limit measures are 
singularly continuous: 𝜇𝜇∞, 𝜈𝜈∞ ∈  ℳpp. In any case, the 
limit measures 𝜇𝜇∞, 𝜈𝜈∞ invariant with respect to the 
transformation ∗.  

Let's consider a fixed family of measures 𝒮𝒮 =
{𝜇𝜇𝛼𝛼 ∈ ℳss}𝛼𝛼∈𝐼𝐼  on the measurable space (Ω,Λ).  The 
measures 𝜇𝜇𝛼𝛼 represent the states of individuals from an 
abstract society 𝒮𝒮, identified by an index 𝛼𝛼. The size of
the society is finite, ♯ {𝐼𝐼} = 𝑚𝑚 < ∞.

Under informational influence, the state of each 
individual changes in discrete time as 𝜇𝜇𝛼𝛼 = 𝜇𝜇𝛼𝛼𝑡𝑡 .  The 
change law is given by the transformation ∗ , which 
describes the conflict interaction with a fixed measure 
𝜈𝜈 ∈ ℳss. The evolution of each individual's state over 
time occurs differently. If one of the limit measures has 
a point spectrum,  𝜇𝜇𝛼𝛼𝑡𝑡=∞  ∈  ℳpp, we interpret this as the 
formation of one of  1 ≤ 𝐢𝐢 ≤ 𝑛𝑛 beliefs. The number of 
individuals who develop a certain belief depends on the 
strategy of informational influence, determined by the 
structure of 𝜈𝜈. 

At the initial moment each individual 𝛼𝛼 ∈ 𝐼𝐼 
corresponds to a measure 𝜇𝜇0(𝛼𝛼) а associated with a 
matrix 𝑃𝑃(𝛼𝛼) of type (1), where the first column is given 
by the coordinates of some stochastic vector 𝐩𝐩0(𝛼𝛼) ∈
ℝ1,+
𝑛𝑛 ,𝑛𝑛 ≥ 2. The evolution of the states 𝜇𝜇𝛼𝛼𝑡𝑡 , 𝑡𝑡 = 0, 1, …, 

s well as the emergence of a point spectrum (i.e., the 
formation of a certain belief 𝐢𝐢 among the individuals in 
society 𝒮𝒮, is described by conflict interaction according 
to the rule (7), where the measure 𝜈𝜈𝑅𝑅0 ∈ ℳss is fixed by 
some vector 𝐫𝐫0 ∈ ℝ1,+

𝑛𝑛 . This measure is associated with 
the source of informational influence. The vector 𝐫𝐫0 can 
naturally be associated with the strategy of informational 
influence since it determines the possibility of forming a 
certain belief 𝐢𝐢. 

According to analysis of the point spectrum 
structure, different limit distributions may arise for each 
of the measures 𝜇𝜇𝛼𝛼𝑡𝑡 ∈ 𝒮𝒮. For 𝜇𝜇𝛼𝛼∞  ∈  ℳpp, meaning that a 
specific belief 𝐢𝐢  is formed in the corresponding 
individual, it is necessary and sufficient (see Theorem 4) 
that the following conditions hold in terms of the initial 
vector coordinates: 

𝑝𝑝𝐢𝐢0(𝛼𝛼) > 𝑟𝑟𝐢𝐢0,    𝑝𝑝𝑖𝑖0(𝛼𝛼) < 𝑟𝑟𝑖𝑖0 

Naturally, as before, to avoid additional 
explanations, we assume that all coordinates of the initial 
vectors 𝐩𝐩0(𝛼𝛼) are non-zero. 

Let 𝐼𝐼𝐢𝐢(𝐫𝐫0) denote the subset of individuals for whom, 
under the influence of a fixed information source with 
strategy 𝐫𝐫0  belief 𝐢𝐢  has been formed. The task is to 
investigate the dependence of the value♯ {𝐼𝐼𝐢𝐢(𝐫𝐫0)}  (the
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number of individuals with a fixed belief 1 ≤ 𝐢𝐢 ≤ 𝑛𝑛) the 
number of individuals with a fixed belief 𝐫𝐫0, the strategy 
of informational influence. 

Theorem 1. If 𝑛𝑛 =  2, then for a family 𝒮𝒮  of any 
arbitrary but finite cardinality ♯ {𝐼𝐼} = 𝑚𝑚 < ∞ , there
always exists a vector 𝐫𝐫0  such that ♯ {𝐼𝐼𝐢𝐢(𝐫𝐫0)} = 𝑚𝑚  for
both beliefs 𝐢𝐢 =  1, 2. 

In the case where there are only two beliefs among 
all individuals in an abstract society, it is possible to form 
a single belief by choosing an appropriate strategy of 
informational influence. However, when there are three 
possible beliefs, i.e., when 𝑛𝑛 = 3, a similar result does 
not hold, even for a society of three individuals. 
Nevertheless, any two arbitrary individuals from a finite 
society can always be united by one of the three possible 
beliefs. 

Theorem 2. Let 𝑛𝑛 =  3,   ♯ {𝐼𝐼} = 𝑚𝑚 < ∞  for any
pair of vectors 𝐩𝐩0(𝛼𝛼),𝐩𝐩0(𝛽𝛽) , there exists a vector 𝐫𝐫0 
such that conditions (8) are simultaneously satisfied for 
𝛼𝛼 and 𝛽𝛽 for both beliefs 1 ≤ 𝐢𝐢 ≤ 3. 

Let us denote by 𝒮𝒮𝑖𝑖   the subset of all related 
individuals. For a fixed belief 1 ≤ 𝐢𝐢 ≤ 𝑛𝑛  individuals 
𝛼𝛼,𝛽𝛽 ∈  𝐼𝐼 are called related if the following conditions 
hold: 

𝑝𝑝𝑖𝑖0(𝛼𝛼), 𝑝𝑝𝑖𝑖0(𝛽𝛽) <
1
𝑛𝑛

,   ∀ 𝑖𝑖 ≠ 𝐢𝐢. 

When there are more than three possible beliefs, it is 
generally impossible to unite any pair of individuals by 
a common belief. However, if the number of beliefs is 
significantly smaller than the number of individuals, 
clusters of individuals close to a certain belief inevitably 
arise in the vector space corresponding to the individuals 
from 𝒮𝒮 , since their number exceeds the number of 
possible beliefs. The following theorem states that all 
related individuals can be united by a single common 
belief. 

Theorem 3. For each set 𝒮𝒮𝑖𝑖 there exists a vector 𝐫𝐫0 
such that conditions (8) are fulfilled simultaneously for 
all 𝛼𝛼 ∈ 𝒮𝒮𝑖𝑖 , therefore, all measures with 𝜇𝜇∞(𝛼𝛼), 𝛼𝛼 ∈ 𝒮𝒮𝑖𝑖 
have the same spectral profile. 
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