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Abstract— Most water supply companies consume a 
large amount of electricity to ensure technological 
processes of water purification and distribution. However, 
even though Vodokanals are a large consumer of 
electricity, the forecasting of electricity consumption is 
still not given priority. An accurate forecast of the amount 
of electricity consumption will allow optimization of the 
distribution of consumption, reducing the values of peak 
consumption and in general reducing the electricity costs. 
In this study, deep learning methods are proposed to 
predict the daily electrical load during a month. Where 
the performance of deep learning artificial neural 
networks and hybrid neural networks are compared, this 
study, based on the comparison of various deep learning 
methods, proposes to increase the effectiveness of the 
application of artificial neural networks by their 
hybridization, to forecast the daily electrical load in the 
monthly period. We combined the gray wolf optimizer 
(GWO) and the group data processing method (GMDH) 
to predict the optimal amount of electrical load in water 
utilities. Keywords—extrapolation; forecasting; 
observation data; plotting position formulas; uncertainty. 

Keywords— power consumption forecasting, deep 
learning, gray wolf optimizer, artificial neural networks, 
GMDH-GWO. 

I. INTRODUCTION 

Electricity load forecasting is a critically important 
task for water supply companies, as it will allow 
developing measures to increase the stability of the 
electricity supply system, economic efficiency, and 
reliability of water supply. More accurate forecasting 
makes it possible to optimize the use of energy 
resources, predict the need for backup power, and 
ultimately reduce the man-made load on the natural 
environment. With demand forecasting, generators can 
produce optimal power levels and save energy 
resources, and utilities get enough time to develop and 
implement plans to balance electricity consumption and 
ensure the functioning of related systems. 

Water utilities with an energy management policy in 
place consume less energy than similar utilities without 
one [7] but many water utilities still do not have such a 
policy. Given the changing energy landscape, having a 
guiding set of energy principles is now more important 
than ever. Water utilities may benefit from additional 
research on the type, scope, and effectiveness of energy 

management policies specific to them, as well as best 
practice recommendations for developing and adopting 
such policies for their unique circumstances [8]. 

Energy management at the water utility level faces a 
major challenge in obtaining the necessary information. 
Water utilities struggle to track basic energy usage data, 
even on a monthly or yearly basis. While these utilities 
already monitor pressure, flow, and water quality at 
multiple sites with intervals of less than an hour, it's 
equally important for them to extend this practice to 
energy monitoring [8]. In the future, water utilities need 
to be just as proficient in processing energy data as they 
are in processing water data. As energy transactions 
become more dynamic and digital, the water sector must 
intensify its efforts to effectively manage relevant data 
to its advantage. 

Forecasting electricity consumption accurately is 
challenging due to various influencing factors, such as 
population, economic development, electricity 
infrastructure, and climatic conditions. Many studies 
have been conducted to develop power consumption 
forecasting models, which are generally classified into 
three categories: nonlinear intelligent models, statistical 
analysis models, and gray forecasting models. 

Just as energy can be saved by optimally scheduling 
pumps, energy can be saved by optimally distributing 
water sources. For large water supply systems with 
several interchangeable water sources, one of the simple 
but underused methods is source selection [8]. 

The category of nonlinear models mainly includes 
techniques such as artificial neural networks and support 
vector machines. For instance, Bouzerdoum et al. [16] 
introduced an innovative approach for short-term PV 
power forecasting by combining SARIMA and SVM 
models. This hybrid model demonstrates exceptional 
accuracy, surpassing individual SARIMA and SVM 
models, and effectively estimates small-scale power 
generation without depending on forecasted 
meteorological parameters. However, its accuracy relies 
on having sufficient training data and experience. 

The Universal Approximation Theorem asserts that 
an Artificial Neural Network (ANN) can effectively 
approximate any nonlinear function. ANN models have 
been utilized for forecasting electricity demand since the 
1990s and have consistently shown promising results [5, 
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6]. Recent advancements in computing power and 
cutting-edge algorithms have led to the development of 
neural networks using machine learning techniques, 
particularly deep neural networks (DNN), which have 
become one of the primary methods for forecasting 
electricity demand. This has been made possible by 
enhancing the abstraction capabilities of model 
functions. The ability of Long Short-Term Memory 
(LSTM) and Gated Recurrent Unit (GRU) networks, 
which are based on Recurrent Neural Networks (RNN), 
to handle sequential data and long-term dependencies 
during the extraction of complex patterns in data has 
significantly contributed to their popularity among 
researchers [5, 6]. 

The research community is increasingly focusing on 
hybrid methods to improve energy modeling. These 
methods combine different approaches or strategies, 
using the strengths of each to improve the accuracy and 
efficiency of energy models. Additionally, the 
researchers applied metaheuristic techniques, which 
include sophisticated intelligent algorithms, to fine-tune 
the parameters of these models, optimizing them for 
superior results. This synergy of hybrid and AI-based 
methodologies paves the way for advancements in 
energy modeling. Heirkha et al. developed a novel 
algorithm that integrates artificial neural networks 
(ANN), principal component analysis (PCA), data 
envelopment analysis (DEA), and ANOVA methods to 
estimate and forecast electricity demand. This algorithm 
considered seasonal and monthly variations, using pre-
processing and post-processing to improve the 
performance of the ANN model. The effectiveness of 
this approach was demonstrated using electricity 
consumption data in Iran, which produced accurate 
estimates. 

In this study, for the first time, it is proposed to 
combine the gray wolf optimizer (GWO) and the group 
data processing method (GMDH) to predict the optimal 
amount of electrical load in water supply companies. 
The use of these methods allows you to automate the 
modeling process, optimize the model structure, and 
ensure high accuracy of forecasting, considering 
complex, non-linear dependencies. 

II. MATERIALS AND METHODS

A. Description of the process of electricity
consumption by pumping stations and preparation
of data for modeling
Pumping stations in water supply companies are the

main components that ensure the transportation of water 
from water intake sources (rivers, reservoirs, wells, etc.) 
to consumers through the pipeline system. They differ in 
types, power, productivity, and specifics of use, 
depending on the needs and features of the water supply 
system. 

The most common types of pumps in water supply 
companies are: 

• Centrifugal pumps are the most common due to
their reliability, ability to work at high speeds,

and provide a large flow of water. They are used 
to supply large volumes of water from water 
intakes to consumers through a network of 
pipelines. 

• Piston pumps are used to supply water under
high pressure, in high-pressure systems, in high-
rise buildings. They are often used to transport
water to high-rise buildings or to supply water
to systems with high resistance.

• Rotary pumps are used in specific cases, for
example, for raising water from underground
wells.

Pump performance (m3/h) determines the volume of 
water that the pump can pump per unit of time. Power 
(kW) determines the amount of electricity required to 
operate the pump. The power depends on the height of 
the water rise (pressure) and the volume of water that is 
pumped. 

Pumps are often equipped with frequency 
converters, which allow you to adjust their speed 
according to the needs of the system. This ensures 
flexible management and more efficient use of energy. 
Modern systems often have automated control systems 
(SCADA), which allow you to monitor the condition of 
the pumps and quickly respond to changes in the load or 
malfunctions. 

Most of the energy is used to pump water, overcome 
the hydraulic resistance of pipelines, and lift the water to 
the necessary height. The pump consumes more energy 
when lifting water to greater heights or over longer 
distances. Additionally, some water systems require 
energy to filter, clean, and treat water before it is 
supplied to consumers. 

By predicting water consumption, pumps can be 
adjusted by reducing their power during low 
consumption or peak loads. This reduces electricity 
costs and reduces the load on electrical networks. The 
use of water storage tanks also allows water to be stored 
during periods of low demand and reduces the load on 
pumps during periods of peak consumption. 

In this study, we used data on electricity 
consumption by pumping stations for water distribution 
problems over the past five years. Using machine 
learning methods (cluster analysis), they were divided 
into groups of high consumption, moderate 
consumption, and abnormal consumption. Further 
simulation results are described in the following 
sections. 

An example of the distribution of electricity 
consumption by the water supply company over the past 
five years (for security reasons, we do not specify the 
name) into cluster groups is shown in Figure 1. 
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Figure 1.  Division into clusters of electricity consumption groups by 
the water supply company 

In Figure 1, the electricity consumption by the water 
supply company is divided into three clusters, where the 
first group of clusters indicates a high volume of 
consumption, the second group of clusters indicates a 
moderate volume, and the third group indicates 
anomalies in the consumption of electricity to pump the 
required volume of water. The dynamics of electricity 
consumption by month is shown in Figure 2. 

Figure 2.  An example of electricity consumption by a water supply 
company 

B. Gray Wolf Optimization Algorithm (GWO)
The GWO method is a metaheuristic algorithm

inspired by the life of gray wolves, which simulates the 
leadership hierarchy and how gray wolves hunt in the 
wild. The leadership hierarchy is divided into four 
groups of wolves; alpha provides the first most 
acceptable solution, beta provides the second most 
acceptable solution, delta provides the third most 
acceptable solution, and finally, omega provides the 
remaining available solutions [15]. 

The gray wolf algorithm is divided into three stages: 
searching for prey (Equation 1), surrounding prey 
(Equation 2), attacking prey. 

Search for prey (reconnaissance). Gray wolves 
look for solutions near the alpha, beta, and delta 
positions. Mirjalili and others. (2014), use A with 
random values greater than 1 or less than −1 to force 
gray wolves to disperse and improve exploration to 

allow the algorithm to perform a global search in the 
search space. 

Prey environment. At this step, the prey is 
surrounded by a pack of gray wolves. The mathematical 
model of the prey environment is described below 
(formulas 1 - 2) [15]. 

where, t is the current iteration,  and  are coefficient 
vectors,  the vector of the position of the victim,  is 
the vector of the position of the gray wolf. Vectors  
and  are determined using the following equations 
[15]: 

where, a linearly decreases from 2 to 0 during iterations 
of the algorithm.  are random vectors in the 
interval [0, 1]. 

Hunting. Alpha (α), beta (β), and delta (δ) wolves 
participate in the hunting process, with alpha (α) 
representing the best solution in the pack, beta (β) the 
second best solution, and delta (δ) the third best 
solution. The first three best solutions are kept and the 
other wolves update their current positions randomly in 
the search space. The behavior of wolves is modeled 
using the following equations [15]: 

where, , represent the alpha (α), beta (β) and 
delta (δ) positions of the wolf,  is the updated 
next position of the wolf. , ,  are the first three 
best solutions [15]. 

Prey attack. The hunting process of gray wolves 
ends when the prey stops moving. 

The current study begins by using the GWO method 
to solve an optimization model for energy consumption 
forecasting accuracy. The GWO algorithm is then used 
to determine the best weights for prediction algorithms 
and to predict the amount of test data. After that, the 
prediction accuracy indicators of the GWO algorithm 
are calculated [15]. 

C. Forecasting the optimal amount of electrical load
based on time series forecasting
The Group Data Processing Method (GMDH) is a

self-organized learning technique that enables you to 
manage the process of a complex model from the input 
set to the output data and determine the model's 
parameters. The GMDH network creates a connection 
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between the input and the output, which is referred to as 
a series of Volterra functions or a function of the 
Kolmogorov–Gabor polynomial [12, 13]. 

Group GMDH transforms neurons into more 
complex units with polynomial transfer functions and 
simplifies the communication between neurons while 
developing automatic algorithms for structure design 
and weight adjustment [12]. 

In the process of creating and evaluating the model, 
the data were divided into three sets: a training set, a test 
set, and a verification set. The training set is included in 
the construction of the model, and the verification set is 
used for the selection of neurons. The unobserved data is 
used to test the performance of the model using the test 
set. The GMDH neural network method is a hierarchical 
system consisting of neurons. The number of relevant 
neurons in each layer depends on the number of inputs 
[12]. 

To train this type of ANN, we divided the data on 
electricity consumption into three sets: training, testing, 
and verification. A model was created based on the 
training set. Polynomial transfer functions allowed us to 
take into account nonlinear relationships between input 
parameters: volume of consumption, time, and volume 
of water pumping. The validation data set was used to 
test the accuracy of the predictions and select the best 
neurons. The algorithm automatically added or removed 
neurons, depending on their efficiency, to ensure the 
optimal structure of the model. 

After building a model with the optimal number of 
neurons, this model was used to predict the optimal 
amount of electrical load. This method is effective for 
water supply companies, as it takes into account the 
complex and changing relationships between factors 
affecting electricity consumption and allows the model 
to be adapted in real-time for more accurate forecasting. 

Since electricity consumption in water utilities may 
vary based on the season or other conditions, GMDH 
can be set to update periodically with new data, 
increasing its adaptability and long-term accuracy. 

D. Assessment of accuracy of forecasting models
The study used the MAPE and RMSE accuracy

assessment metrics to evaluate the forecasting accuracy 
of hybrid models. Formula (4) presents the root mean 
square error (RMSE) formula, which defines RMSE as 
the standard deviation of the difference between the 
actual value and the predicted value of the data [13]. 

Where  is the predicted volume of test data,  
denotes the actual volume of test data, and n is the 
number of test data [13]. 

The MAPE index (equation (5)) measures the 
difference between the predicted and actual values for 
test data. Another index used in this study for prediction 
algorithms is the mean absolute error (MAE), which 
indicates the absolute difference between the predicted 
and actual test data for energy consumption [13]. 

In this study, we focus on minimizing the Mean 
Absolute Percentage Error (MAPE) value. The training 
results of the hybrid models used for forecasting power 
demand are inputted into the optimization model. The 
proposed model calculates a new prediction value by 
assigning weights to each algorithm and to their 
predictions. It also considers the intercept value and the 
difference between the predicted and actual data. The 
model then recommends the optimal MAPE index state. 
The MAPE optimization model is presented in [13]. 

III. SIMULATION RESULTS

A. The result of training the GMDH model
The group data processing method (GMDH) is an

effective forecasting method. This method analyzes 
complex relationships between variables. In the case of 
forecasting the amount of electricity consumption in 
water supply companies, this method allows for taking 
into account a wide range of factors that affect energy 
consumption, such as weather conditions, daily and 
seasonal fluctuations, the level of water demand, etc. 

As a result of training the group data processing 
model, we obtained the following results: the GMDH 
model is built from 19 layers, each of which is trained 
separately. The training time of each layer varies from 
about 8.87 seconds (layer 0) to 20.70 seconds (layer 2), 
indicating the speed and efficiency of the model-
building process. 

From layer 1 to layer 18, the training time is stable 
and fluctuates between 18-21 seconds, which shows that 
the model is stable when adding new layers and 
optimizing. The RMSE model accuracy indicator 
indicates the average difference between the predicted 
and actual values. A smaller RMSE value indicates 
higher accuracy. The RMSE value on the test data 
(245.21) is lower than on the training data (379.99), 
which may indicate that the model generalizes the data 
well and is not overtrained. 

A low MSE value for the test data indicates a good 
adaptation of the model to the new data. MAPE shows 
the mean absolute error as a percentage of the actual 
values. The values of 5.899% for the training data and 
0.0529% for the test data indicate that the model 
predicts power consumption well. A significantly lower 
MAPE value on the test data may indicate that the 
model fits the new data very well. The result of training 
the GMDH model is shown in Figure 3. 
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Figure 3.  An example of electricity consumption by a water supply 
company 

B. The result of hybrid GMDH-GWO training
The GWO algorithm was used to optimize the

parameters of the GMDH model, in particular the 
number of layers and the type of activation functions. 
This made it possible to automatically adjust the model, 
ensuring high accuracy without manual selection of 
parameters. The GMDH network adapted to non-linear 
dependencies in the data, which was very useful for 
forecasting complex time series such as electricity 
consumption. The combination with GWO made it 
possible to choose the best structure, ensuring the 
adaptability of the model to changes in the data. The 
result of training the GMDH-GWO hybrid model is 
shown in Figure 4. 

By optimizing the model using GWO, the root mean 
square error (RMSE) and mean absolute percentage 
deviation (MAPE) were significantly reduced. This has 
provided more accurate forecasts, allowing for more 
efficient resource management and lower energy costs. 

The combination of Grey Wolf Optimizer (GWO) 
and Group Method of Data Handling (GMDH) enabled 
automatic selection of model parameters, reducing the 
need for expert intervention in tuning and ensuring more 
efficient use of computing resources. 

Figure 4.  The result of the hybrid GMDH-GWO method simulation 

Visualization of forecasts showed that the model can 
accurately reproduce trends and fluctuations in 
electricity consumption, which is critically important for 

water supply companies when planning energy 
resources. 

C. Comparison of the obtained results and assessment
of the accuracy of hybrid models
The training results of the GMDH model show that

the model has better performance on the training data set 
than the GMDH-GWO hybrid model. In the GMDH 
neural network, each layer was trained for an average of 
about 19-20 seconds, while in the hybrid model, the 
training time is slightly longer. GMDH-GWO has a 
lower RMSE on the training set, indicating better 
accuracy on the training data. Similarly, the MSE of the 
GMDH-GWO model is lower, confirming the smaller 
mean error. MAPE in the GMDH-GWO network is 
5.90%, in the GMDH model - 6.72%. This indicates that 
the batch data processing method model is more 
accurate during training. RMSE on the test set for both 
models is almost the same, with a slight advantage of 
the second set. This shows that both models have similar 
accuracy on new, unobserved data. The MSEs of both 
models are also close, with the second set having 
slightly lower values, but the difference is small. 

The first set has higher accuracy and lower error 
rates compared to the training set, indicating its superior 
ability to learn patterns in the data. Both sets perform 
similarly on the test set, but the first set has a lower 
MAPE, suggesting better generalization ability. Overall, 
the first set is more optimal because it demonstrates 
superior results on both training and test data. 

D. Forecasting the optimal amount of electricity for the
tasks of Vodokanals
Forecasting the optimal electrical load is important

for water utilities for several reasons: 

• Economic efficiency: Knowing when and how
much electricity will be needed allows
companies to optimize energy costs. This helps
avoid overspending during peak loads or
inefficient use of energy during periods of low
demand.

• Maintaining system stability: Load forecasting
allows for a stable water supply, as water
pumping stations and other components of the
water supply system require electricity to
operate. This allows you to avoid emergencies
and water supply failures.

• Optimizing equipment operation: Companies
can schedule the operation of pumping stations
and other equipment based on predicted load,
which minimizes wear and tear and extends the
life of the equipment.

• Environmental component: Optimizing
electricity consumption helps reduce CO₂
emissions and other harmful emissions
associated with electricity production, which is
important for companies seeking to reduce their
impact on the environment.

• Backup power planning: Load forecasting
allows you to prepare for possible power
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outages and properly plan the use of backup 
power sources, which will ensure an 
uninterrupted water supply. 

Therefore, the forecasting of electrical load is 
critically important for ensuring the economic, technical, 
and environmental efficiency of water supply 
companies. 

IV. CONCLUSION

This study investigates the importance and 
effectiveness of combining Grey Wolf Optimizer 
(GWO) and Group Method of Data Handling (GMDH) 
for forecasting electricity load in water supply systems. 
It demonstrates the practical value of these methods in 
enhancing the performance of such companies. GMDH 
constructs a model using a training dataset by applying 
polynomial transfer functions to the neurons, enabling 
the consideration of non-linear dependencies between 
inputs. The network structure is optimized automatically 
using a verification set to select the most efficient 
neurons in each model layer. The model is then tested 
on non-training data to assess its performance and 
accuracy. 

The idea of combining GWO and GMDH to predict 
the optimal electrical load in water distribution problems 
provides the following advantages: 

• Improved Forecasting Accuracy: The
combination of Grey Wolf Optimizer (GWO)
and Group Method of Data Handling (GMDH)
has enabled the creation of models with high
forecasting accuracy by optimizing weights and
capturing nonlinear relationships. This is
particularly valuable for forecasting complex
and non-linear systems, like electricity
consumption in water supply companies, where
numerous factors such as weather conditions
and consumer demand need to be considered.

• Rapid adaptation to changes: The use of GWO
allowed GMDH parameters to be adaptively
changed in case of new data or changing
conditions. This made it possible to create
models that quickly adapt to new circumstances
and provide accurate real-time forecasting.

• The combination of Grey Wolf Optimization
(GWO) with Group Method of Data Handling
(GMDH) has automated the process of finding
the optimal model. This has reduced the time
and effort required for model development. As a
result, more accurate forecasts can be obtained
faster, leading to more effective resource
management.

Hence, it is crucial to combine the Gray Wolf 
Optimizer with the GMDH model to enhance 
forecasting accuracy. GWO efficiently optimizes the 
parameters and structure of the GMDH, thereby 
reducing the risk of overtraining and ensuring the 
model's adaptability. 
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