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Abstract — In this communication we present
conditions for solvability of the matrix equation AX
+ YB = C over the ring of integers Z . The necessary
and sufficient conditions for the solvability of this
equation in terms of the Smith normal forms of the
matrices A and B are given. The conditions under
which this equation has a minimal solution are also
given.
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1. INTRODUCTION

Let Z be the ring of integers. We denote by (a,b)

the greatest common divisor of nonzero elements
a,b € Z. Further, let Z, , be the set of mxn matrices

over Z . Denote by 7, the identity matrix of dimension
n and by 0
by GL(m,Z) the set of invertible matrices in Z,, , .

Let DeZ,,
exist matrices U,V € GL(m,Z) such that

UDV =8, =diag(d,,d,,...,d 0, ...,0)
is the Smith normal form of matrix D, ie. d, € Z and
d.|d.,, (divides) for all i =1,2,...,r—1. The matrix S,
we write in the form S, = diag (S(4),0,...,0) , where
S(A) =diag(a,,a,,...,a,).
Consider the matrix equation

AX +YB=C, (1)

the zero m xn matrix. We will denote

m,n

and rank D =r. For matrix D there

where AeZ

unknown mxn matrices over Z .

BeZ CeZ

m,m? n,n? m,n?

X and Y are

The main problem of studying the linear matrix
equation (1) is to give conditions for its solvability. In
addition, it is also necessary to know the structure of a
general solution of this equation. The equation (1) is
one of the best known matrix equations in matrix theory
and its applications. The problem of solvability of equa-
tion (1) has drawn the attention of many mathemati-
cians.

Roth [16] showed that equation (1) is consistent
over a field F if and only if matrices
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4 C 4 0
M. = and M, = ’
On,m B On,m B

are equivalent. Roth's condition is equivalent to the
following statement: Equation (1) is consistent over a
field F if and only if

rank M. = rank A +rank B .

Through the generalized inverses of matrices, Bak-
salary and Kala [1] showed that equation (1) over a
field is consistent if and only if the following condition

holds: (/,, —AA")C(/,,—B B)=0,,, and gave the gen-

n

eral solutions of (1), where 4~ and B~ are generalized
inverse of matrices 4 and B respectively. Many au-
thors addressed the question when the equation (1)
(over the real numbers R, the complex number C, the
quaternion skew field H or commutative rings has a
solution belonging to a special class of matrices (see
[4], [6-13], [19] and references therein).

Let R be a commutative ring with identity. In [7]
was prove the following statement: The matrix equation
AX +YB =C is solvable over R if and only if matri-
ces M. and M, are equivalent (see also [8]).

If matrices 4€Z,,,
with respectively prime determinants then equation (1)
is solvable over Z for arbitrary matrix C € Z,, . In this

and BeZ, , are nonsingular

report we give necessary and sufficient conditions of
solvability of matrix equation (1) over Z in terms of the
Smith normal forms of matrices 4 and B .

II. MAIN RESULTS
Theorem 1. Let AcZ BeZ CeZ and

rank A= p, rank B = q. Further, let U,,V, € GL(m,Z)
and U,,V, € GL(n,Z) such that

UAV, =S8, = diag(al,az,...,ap,o, ...,0)
and

U,BV, =S, =diag(b,,b,,...,b,,0, ...,0).
Matrix equation AX +YB = C is solvable over Z if
and only if the following conditions are held
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P
0 Oup.img
where f,€Z, PeZ,, ,and Q€L, , ;

b) (a,,b)| f; forall i=1,2,....p; j=12,....q
and P =diag(a,,a,,...,a,)F,, O=0diag(b,b,,...,b)).

Proof. Let mxn matrices X, and ¥, over Z be a
solution of equation (1). Further, let U,,V, € GL(m,Z)
and U,,V, € GL(n,Z) such that

U AV, =8, = diag (S(4),0,...,0)
and
U,BV, = S,diag (S(B),0,...,0).
From equality 4X,+Y,B=C we have
S, X, +Y,S, =C,, 2)

Put

X :|:X11 X121| Y :|:Y;l Y;2j| C :|:C11 C12j|
’ XZ] XZZ ’ YZI YZZ ’ CZ] C22

where
- X, X
XO :I/;IXOI/Z :|: 11 12
XZ] 22

. N R
YO = UIYOUZ = Y. Y. I’ Y]] < Zp,fi 4 Yz‘ € Z’”"’"J >
21 22

}, X, GZM X, €Z

p.n=p?

C,=UCV, = G G , C,€Z, ,C,eZ, .,
C21 C22 pP.q m—q.,q
C, e Z"_M .
From equality (2) follows
SAX,,+Y,S(B) = F,
S(A)X,, = P,
Y, S(B) = 0
m—p,n—q = C22 :

Thus, from the first equality of this system of equalities,
we obtain (a,,b;)| f; forall I<i<p and 1< j<q.

Conversely, suppose (a;,b,)| f; for all 1<i<p and
1< j<gq. Thus, there exist elements p,,q, €Z such
that a,p, +b,q, = f, . Hence, there exist matrices
R €Z,,, O,€Z,, such that S(ADR, +0,S(B)=F.
Considering equalities S(4)X,, =P and Y,,S(B)=0,
we obtain X, =F,cZ and Y, =0, €%, ,, -
and Q,, €Z

p.n=p
So, for any matrices P, € Z

m-p,n—q m=p,n—q

the following equality holds

SA|:P11 P]2:|+|:Q]I 0 :|SB:|:132] P21:|

0 ])22 QZI QZZ 1321 0

From this equality it follows that equation (2) is sol-
vable.
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It is obvious that the pair of matrices

R, R 0
X, :V{ ! IZ}VZ and =U1‘{Q“ }U; is
0 P22 QZI QZZ

a general solution of equation (1). The proof of Theorem
1 is complete.

From the proof of the sufficiency of Theorem 1, we
obtain a method for constructing the general solution of
equation (1).

The ring Z is an Euclidian domain. In the ring Z is
defined a nonnegative integral valued function so satis-
fying the following conditions:

a) @(a)=0if a=0 is thezero of Z

b) ¢(a)=@(b) if a divides b ;

¢) for any pair of elements a,b € Z there exist elements
q,r € Z such that a =bq+r and ¢(r) < p(b).

In general, the existence of ¢ and 7 is not assumed to
be unique. We defined the integral function of the Eu-

clidean norm in the domain Z as follows @(b) :|b|
and ()20, i.c. ¢(r)€{0,1,....[b|-1}. Thus, for arbi-
trary elements a,b e E there exist unique elements
q,r €Z such that a=bg+r and @(r)<eb). We
note that this property of the Euclidean norm ¢ holds
for the ring of polynomials F[A] over a field F .
Consider the equation ax+ by = ¢, where a,b,c € Z
and x,y are unknown elements in Z. We say that a
pair of elements x,,y, € Z is a minimal solution (with

respect to y ) of the equation ax+by =c if

P(yo) < p(a).

Proposition 1. Let a,b,c € Z be nonzero elements.
The equation ax+by =c has a unique “minimal” solu-
tion x,,y, over Z such that ¢(y,) < @(a) if and only if
elements a and b are relatively prime, i.e. (a,b) =e.

Denote by Z, the set of nonnegative integers of the
domain Z . For nonsingular matrix A€ Z, , there ex-
ists a matrix W € GL(m,Z) such that

R0 ... ... 0
0 ... 0

AW — HA — 21 2
hml hmZ hm,m—] hm

is a lower triangular matrix in which 4, € Z, for all
1<i<m 1 and o(h,) < @(h) forall 1< j<i<m. The
matrix H , is called the Hermitian normal form of the

matrix 4. Taking into account Proposition 1 and article
[15], we get the following statement.
Theorem 2. Let A€Z,, and BeZ,, be nonsin-

gular matrices and C € Z,, . Further, let

m
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A0 ... 0

h, h 0 .. 0
HA = AW = 21 2

hm] hm2 hm,m—l hm

be the Hermitian normal form of the matrix A, where
W e GL(m,Z). The matrix equation

AX+YB=C
has a unique “minimal” solution X € Z,, and

Ju i Vit Vi
Yy =\va Vi Yin-t VYm || € Zm,n
yml ymZ ym,nfl ymn

such that for all @(y,)<e@(h) for all 1<i<m and
1<k <n ifand only if (det A,det B) =1.

Let F[A] be the polynomials ring over a field F.

We defined the integral function of the Euclidean norm
in the domain F[A] as follows @(a(4)) =dega(A).

The polynomial Diophantine equations are used in
the theory of control systems as a special mathematical
object whose application makes it possible to efficiently
solve a broad range of the problems of synthesis of sys-
tems, including control systems. The entire classical
automata theory is, in fact, constructed on the basis of
the Diophantine equations (both in the scalar form and
in the matrix form). A significant part of available
methods used for the synthesis of linear systems can be
described as methods aimed at finding solutions of the
matrix polynomial equation

AD)X(A)+Y(A)B(A) = C(A) 3)

(and, in particular, of the “minimal” solutions). In this
case, the search and construction of all classes of solu-
tions of linear polynomial equations depends on the
number of steps of divisibility of polynomials with
remainders and can be obtained in the explicit form as a
result of proper substitutions.

In his investigations of the structures of polynomial
matrices over the field, Barnett [2] showed that regular
matrices A(4) € F, ,[A] and B(4)e F, [1] have co-

prime determinants if and only if for any mxn matrix
C(A) such that

deg C(A) < deg A(1)+deg B(1)
matrix equation (3) possesses a unique minimal
solution such that deg X,(1) < deg B(4) and
degY (1) <deg A(1).

The conditions under which the minimal solution of
equation (3) exists were weakened in [5] and [14, 18].
Thus, in [5], it was proved that the Barnett condition for
the existence of the unique minimal solution can be
weakened as follows: the unique minimal solution of
equation (3) exists in the case where only one of the
matrices A(L) or B()) is regular. More recent investiga-
tions showed that the conditions of existence of the
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minimal solution of equation (3) established in [5] can
also be weakened. Indeed, the following assertion was
proved in [14]: The unique minimal solution of equa-
tion (3) exists if at least one of irregular and nonsingu-
lar matrices A(A) and B(A) with coprime determinants
can be regularized (A(A) from the left or B(A) from the
right). Thus, the conditions of [5] cover a much broader
class of equations of the form (3) for which it is possi-
ble to indicate the minimal solution. The methods used
for the construction of solutions of equation (3) under
certain restrictions were presented in [15, 16].

We defined the Euclidean norm in the domain F[A]

as follows @(a(A)) =dega(A).
Proposition 2. Let a(A),b(1),c(1) € F[A] be non-
zero elements. The equation

a(A)x(A) +b(A)y(A) = c(4)

has a unique “minimal” solution x,(A),y,(1) over
F[A] such that deg y,(A) <dega(A) if and only if ele-
ments a(A) and b(L) are relatively prime,
(a(4),b(2)) =1.

Using Proposition 2 and [16], we formulate a condi-

tion under which equation (6) has a “minimal” solution
under certain restrictions.

Theorem 3. Let A(A) € F,

m,m

ie.

[2] and B(2) € F,, [4]
be nonsingular matrices and C(A) € F, [1]. Further,
let
H,(2)= AW (A) =
h(A) 0 0
hy, (1) hA) 0 .. 0

hy(A)  h,,(4) Byt (A) - h, ()
be the Hermitian normal form of the matrix A(A), whe-
re W(A) € GL(m,F[A]), h(A)e F[A] are monic poly-
nomials and degh, (1) <degh,(A) for all 1<i<m and
1< j <i<m. The matrix equation
AN XA)+Y(A)B(L)=C(A)

has a unique “minimal” solution X (1) € F, (1) and

Y,(4) =
(4 (A Vi, (A)
=|yu(d) Yu(4) Yu(D|€F,,[4]
Vi (4) Y (A) Vo (A)

such that for all degy, (1) <degh, (1) forall 1<i<m
and 1<k <n ifand only if (det A(1), det B(1))=1.
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