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Abstract – In this communication we present 
conditions for solvability of the matrix equation AX 
+ YB = C over the ring of integers  . The necessary
and sufficient conditions for the solvability of this
equation in terms of the Smith normal forms of the
matrices A and B are given. The conditions under
which this equation has a minimal solution are also
given.
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I. INTRODUCTION 

Let   be the ring of integers. We denote by ( , )a b  
the greatest common divisor of nonzero elements 

, .a b ∈  Further, let ,m n  be the set of nm ×  matrices 
over  . Denote by nI  the identity matrix of dimension
n  and by nm,0  the zero nm ×  matrix. We will denote 
by ( , )GL m   the set of invertible matrices in ,m m . 

Let ,m nD ∈  and .rank D r= For matrix D  there 
exist matrices , ( , )U V GL m∈   such that 

1 2( , , , ,0, ,0)D rUDV S diag d d d= =    
is the Smith normal form of matrix D , i.e. id ∈   and 

1|i id d +  (divides) for all 1, 2, , 1i r= − . The matrix AS  
we write in the form ( ( ),0, ,0)AS diag S A=  , where 

1 2( ) ( , , , )rS A diag a a a=  . 
Consider the matrix equation 

,AX YB C+ =  (1)

where , ,m mA∈  , ,n nB ∈  , ,m nC ∈ X  and Y  are 
unknown m n×  matrices over  . 

 The main problem of studying the linear matrix 
equation (1) is to give conditions for its solvability. In 
addition, it is also necessary to know the structure of a 
general solution of this equation. The equation (1) is 
one of the best known matrix equations in matrix theory 
and its applications. The problem of solvability of equa-
tion (1) has drawn the attention of many mathemati-
cians. 

 Roth [16] showed that equation (1) is consistent 
over a field   if and only if matrices  
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are equivalent. Roth's condition is equivalent to the 
following statement: Equation (1) is consistent over a 
field   if and only if 

Crank M  = rank A rank B+ . 

Through the generalized inverses of matrices, Bak-
salary and Kala [1] showed that equation (1) over a 
field is consistent if and only if the following condition 
holds: ,( ) ( ) 0m m m nI AA C I B B− −− − =  and gave the gen-

eral solutions of (1), where A−  and B−  are generalized 
inverse of matrices A  and B  respectively. Many au-
thors addressed the question when the equation (1) 
(over the real numbers R, the complex number C, the 
quaternion skew field H or commutative rings has a 
solution belonging to a special class of matrices (see 
[4], [6–13], [19] and references therein). 

Let R  be a commutative ring with identity. In [7] 
was prove the following statement: The matrix equation 
AX YB C+ =  is solvable over R  if and only if matri-

ces CM  and 0M  are equivalent (see also [8]). 

If matrices ,m mA∈ and ,n nB ∈ are nonsingular 
with respectively prime determinants then equation (1) 
is solvable over   for arbitrary matrix , .m nC ∈  In this
report we give necessary and sufficient conditions of 
solvability of matrix equation (1) over   in terms of the 
Smith normal forms of matrices A  and B . 

II. MAIN RESULTS

Theorem 1. Let , ,m mA∈ , ,n nB ∈ ,m nC ∈  and
,rank A p= .rank B q=  Further, let 1 1, ( , )U V GL m∈ 

and 2 2, ( , )U V GL n∈   such that 

1 1 1 2( , , , ,0, ,0)A pU AV S diag a a a= =  

and 
2 2 1 2( , , , ,0, ,0)B qU BV S diag b b b= =   . 

Matrix equation AX YB C+ =  is solvable over   if 
and only if the following conditions are held  
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where ijf ∈ , ,p n pP −∈  and ,m p qQ −∈ ;

b) ( , ) |i j ija b f  for all 1, 2, , ;i p=   1, 2, ,j q= 

and 1 2 1( , , , ) ,rP diag a a a P=  1 1 2( , , , ).qQ Q diag b b b=   

Proof. Let m n×  matrices 0X  and 0Y  over   be a
solution of equation (1). Further, let 1 1, ( , )U V GL m∈ 
and 2 2, ( , )U V GL n∈   such that 

1 1 ( ( ),0, ,0)AU AV S diag S A= = 

and 
2 2 ( ( ),0, ,0).BU BV S diag S B=   

From equality 0 0AX Y B C+ =  we have 

0 0 0 ,A BS X Y S C+ =  (2)
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 11 ,p qC ∈ , 12 ,m q qC −∈ , 

21 ,n p qC −∈ . 
From equality (2) follows 
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Thus, from the first equality of this system of equalities, 
we obtain ( , ) |i j ija b f  for all 1 i p≤ ≤  and 1 j q≤ ≤ . 

Conversely, suppose ( , ) |i j ija b f  for all 1 i p≤ ≤ and 
1 .j q≤ ≤  Thus, there exist elements ,ik kjp q ∈  such 
that i ik j kj ija p b q f+ = . Hence, there exist matrices 

11 ,p qP ∈ , 11 ,p qQ ∈  such that 11 11( ) ( ) .S A P Q S B F+ =  
Considering equalities 12( )S A X P=  and 21 ( )Y S B Q= , 
we obtain 12 12 ,p n pX P −= ∈  and 21 21 ,m p qY Q −= ∈ . 
So, for any matrices 22 ,m p n qP − −∈  and 22 ,m p n qQ − −∈
the following equality holds 

11 12 11 21 21

22 21 22 21

0
.

0 0A B

P P Q P P
S S

P Q Q P
     

+ =     
     

 

From this equality it follows that equation (2) is sol-
vable.  

It is obvious that the pair of matrices 
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 is 

a general solution of equation (1). The proof of Theorem 
1 is complete.  

From the proof of the sufficiency of Theorem 1, we 
obtain a method for constructing the general solution of 
equation (1). 

The ring   is an Euclidian domain. In the ring   is 
defined a nonnegative integral valued function so satis-
fying the following conditions: 

a) ( ) 0aϕ = if 0a =  is the zero of  ;

b) ( ) ( )a bϕ ϕ=  if a  divides b ;
c) for any pair of elements ,a b ∈ there exist elements

,q r ∈  such that a bq r= +  and ( ) ( ).r bϕ ϕ<  

In general, the existence of q and r is not assumed to
be unique. We defined the integral function of the Eu-
clidean norm in the domain   as follows ( )b bϕ =  

and ( ) 0rϕ ≥ , i.e. { }( ) 0,1, , 1r bϕ ∈ − . Thus, for arbi-

trary elements ,a b E∈ there exist unique elements 
,q r ∈  such that a bq r= +  and ( ) ( ).r bϕ ϕ<  We 

note that this property of the Euclidean norm ϕ  holds 
for the ring of polynomials [ ]F λ  over a field F . 

Consider the equation ,ax by c+ =  where , ,a b c ∈  
and ,x y  are unknown elements in .  We say that a
pair of elements 0 0,x y ∈  is a minimal solution (with 
respect to y ) of the equation ax by c+ =  if 

0( ) ( ).y aϕ ϕ<  

Proposition 1. Let , ,a b c ∈  be nonzero elements. 
The equation ax by c+ =  has a  unique “minimal” solu-
tion 0 0,x y  over   such that 0( ) ( )y aϕ ϕ<  if and only if 
elements a  and b  are relatively prime, i.e. ( , )a b e= . 

Denote by +  the set of nonnegative integers of the 
domain  . For nonsingular matrix ,m mA∈  there ex-
ists a matrix ( , )W GL m∈   such that  
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is a lower triangular matrix in which ih +∈  for all 
1 i m≤ ≤ 1 and ( ) ( )ij ih hϕ ϕ<  for all 1 .j i m≤ < ≤  The 
matrix AH  is called the Hermitian normal form of the 
matrix .A  Taking into account Proposition 1 and article 
[15], we get the following statement. 

Theorem 2. Let ,m mA∈  and ,n nB ∈  be nonsin-
gular matrices and ,m nC ∈ . Further, let

265



Modeling, control and information technologies – 2024 

1

21 2

1 2 , 1

0 0
0 0

A

m m m m m

h
h h

H AW

h h h h−

 
 
 = =
 
 
  

 



  



be the Hermitian normal form of the matrix ,A  where 
( , ).W GL m∈   The matrix equation 

AX YB C+ =
has a unique “minimal” solution 0 ,n mX ∈  and 
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such that for all  ( ) ( )ik iy hϕ ϕ<  for all 1 i m≤ ≤  and 
1 k n≤ ≤  if and only if (det ,det ) 1.A B =  

Let [ ]F λ  be the polynomials ring over a field .F  
We defined the integral function of the Euclidean norm 
in the domain [ ]F λ  as follows ( ( )) deg ( ).a aϕ λ λ=  

The polynomial Diophantine equations are used in 
the theory of control systems as a special mathematical 
object whose application makes it possible to efficiently 
solve a broad range of the problems of synthesis of sys-
tems, including control systems. The entire classical 
automata theory is, in fact, constructed on the basis of 
the Diophantine equations (both in the scalar form and 
in the matrix form). A significant part of available 
methods used for the synthesis of linear systems can be 
described as methods aimed at finding solutions of the 
matrix polynomial equation  

( ) ( ) ( ) ( ) ( )A X Y B Cλ λ λ λ λ+ =        (3) 

(and, in particular, of the “minimal” solutions). In this 
case, the search and construction of all classes of solu-
tions of linear polynomial equations depends on the 
number of steps of divisibility of polynomials with 
remainders and can be obtained in the explicit form as a 
result of proper substitutions. 

In his investigations of the structures of polynomial 
matrices over the field, Barnett [2] showed that regular 
matrices ,( ) [ ]m mA Fλ λ∈  and ,( ) [ ]n nB Fλ λ∈  have co-
prime determinants if and only if for any m n×  matrix 

( )C λ  such that  
deg ( ) deg ( ) deg ( )C A Bλ λ λ≤ +  

matrix equation (3) possesses a unique minimal 
solution such that 0deg ( ) deg ( )X Bλ λ<  and  

0deg ( ) deg ( )Y Aλ λ< .  
The conditions under which the minimal solution of 

equation (3) exists were weakened in [5] and [14, 18]. 
Thus, in [5], it was proved that the Barnett condition for 
the existence of the unique minimal solution can be 
weakened as follows: the unique minimal solution of 
equation (3) exists in the case where only one of the 
matrices A(λ) or B(λ) is regular. More recent investiga-
tions showed that the conditions of existence of the 

minimal solution of equation (3) established in [5] can 
also be weakened. Indeed, the following assertion was 
proved in [14]: The unique minimal solution of equa-
tion (3) exists if at least one of irregular and nonsingu-
lar matrices A(λ) and B(λ) with coprime determinants 
can be regularized (A(λ) from the left or B(λ) from the 
right). Thus, the conditions of [5] cover a much broader 
class of equations of the form (3) for which it is possi-
ble to indicate the minimal solution. The methods used 
for the construction of solutions of equation (3) under 
certain restrictions were presented in [15, 16]. 

We defined the Euclidean norm in the domain [ ]F λ  
as follows ( ( )) deg ( ).a aϕ λ λ=  

Proposition 2. Let ( ), ( ), ( ) [ ]a b c Fλ λ λ λ∈  be non-
zero elements. The equation 

( ) ( ) ( ) ( ) ( )a x b y cλ λ λ λ λ+ =  

has a unique “minimal” solution 0 0( ), ( )x yλ λ  over 
[ ]F λ  such that 0deg ( ) deg ( )y aλ λ<  if and only if ele-

ments ( )a λ  and ( )b λ  are relatively prime, i.e. 
( ( ), ( )) 1a bλ λ = .   

Using Proposition 2 and [16], we formulate a condi-
tion under which equation (6) has a “minimal” solution 
under certain restrictions. 

Theorem 3. Let ,( ) [ ]m mA Fλ λ∈  and ,( ) [ ]n nB Fλ λ∈  
be nonsingular matrices and ,( ) [ ]m nC Fλ λ∈ . Further, 
let  
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be the Hermitian normal form of the matrix ( ),A λ  whe-
re ( ) ( , [ ]),W GL m Fλ λ∈  ( ) [ ]ih Fλ λ∈  are monic poly-
nomials and deg ( ) deg ( )ij ih hλ λ<  for all 1 i m≤ ≤ and 
1 j i m≤ < ≤ . The matrix equation 

( ) ( ) ( ) ( ) ( )A X Y B Cλ λ λ λ λ+ =  
has a unique “minimal” solution 0 ,( ) ( )n mX Fλ λ∈  and  
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such that for all deg ( ) deg ( )ik iy hλ λ<  for all 1 i m≤ ≤
and 1 k n≤ ≤  if and only if (det ( ), det ( )) 1.A Bλ λ =  
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