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Abstract – Accurate forecasting of precipitation is 
essential for various sectors, including agriculture, disaster 
management, and water resource planning. This paper 
presents a deep learning architecture that combines 
Convolutional Neural Networks (CNN) and Bidirectional 
Long Short-Term Memory (BiLSTM) layers to predict 
precipitation using a set of weather parameters, including 
temperature, station level pressure, dew point, and 
calculated relative humidity. The proposed architecture 
leverages CNN for feature extraction and BiLSTM for 
capturing temporal dependencies, offering insights into the 
model's efficiency and the challenges associated with 
predicting precipitation using calculated inputs. 

Keywords – meteorology data, weather forecasting, 
convolutional neural network, LSTM. 

I. INTRODUCTION

Forecasting precipitation is a complex task due to the 
chaotic nature of weather systems and the multitude of 
influencing factors. Accurate short-term predictions of 
precipitation events like rain or snow are vital for 
decision-making in agriculture, transportation, and 
disaster preparedness [1]. Traditional numerical weather 
prediction models often struggle with fine-scale 
phenomena, prompting the exploration of machine-
learning techniques that learn from historical data 
patterns [2]. 

Previous studies have demonstrated the effectiveness 
of CNN-LSTM architectures in predicting continuous 
variables such as temperature and wind speed. In our 
earlier work [3], we successfully applied a CNN-
BiLSTM model for gap-filling in temperature time series 
data, addressing the issue of missing meteorological 
measurements. However, predicting a binary 
precipitation event using similar techniques poses 
significant challenges. Furthermore, precipitation 
quantities should be adequately estimated for rainy days. 

This paper aims to analyze a CNN-BiLSTM model 
architecture explicitly designed to predict precipitation 
using weather parameters, including calculated relative 
humidity. We focus on the roles of custom functions for 
binary outputs, the integration of CNN and BiLSTM 
layers, preprocessing steps such as scaling and 
transformation, and the challenges involved in handling 
calculated inputs and binary targets.  

II. MATERIALS AND METHODS

A. Calculation of Relative Humidity
Since relative humidity is a critical parameter for

predicting precipitation but is not directly available in our 
data, we calculate it from temperature and dew point 
temperature using a formula derived from the Clausius-
Clapeyron equation [4]: 

RH = 100 × exp �
17.625 × 𝑇𝑇𝑑𝑑
243.04 + 𝑇𝑇𝑑𝑑

−
17.625 × 𝑇𝑇
243.04 + 𝑇𝑇

� . 

B. Data acquisition and preprocessing
Daily weather records for model training and

validation are sourced from the NCDC Climate Data 
Online – an open data service that aggregates historical 
records from thousands of weather stations across the 
world [5]. We selected Ukrainian stations with the least 
missing data frequency for analysis: Zhuliany, Rivne, 
Poltava, Vinnytsya, and Sumy. Downloaded meteorology 
records for 2014 – 2024 from these stations were 
separated into train and test datasets by 70:30 rule. 

Min-Max feature scaling is applied to quantitative 
meteorology variables: average daily temperature, 
relative humidity, air pressure, precipitation quantities. 
For the binary target variable (precipitation events), we 
apply a logarithmic transformation using the natural 
logarithm of one plus the value to handle skewness in the 
data distribution: 

𝑋𝑋transformed = log(1 + 𝑋𝑋). 

C. Model Architecture
The proposed model is designed to predict

precipitation using multiple weather parameters as input 
features. Its architecture is schematically visualized in 
Figure 1.  

Each weather parameter, namely temperature, dew 
point, station level pressure, and relative humidity, has its 
input layer corresponding to the historical sequence 
length. Each input feature is processed through its 
convolutional layer, applying filters to extract local 
temporal patterns. After convolution, MaxPooling layers 
reduce dimensionality by selecting the maximum value 
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within a pooling window, summarizing the most 
prominent features.  

Outputs from the feature-specific convolutional and 
pooling layers are concatenated to combine the extracted 
features from all inputs, forming a unified representation. 
The merged features are then passed through two 
Bidirectional LSTM layers, which process the data 
forward and backward to capture temporal dependencies. 
The BiLSTM captures information from past and future 
contexts by processing sequences in both directions. An 
attention layer is applied to focus on relevant time steps 
within the sequence, allowing the model to weigh the 
importance of different time steps when making 
predictions [6]. We also add dropout layers that randomly 
set a fraction of input units to zero during training after 
the LSTM and attention layers to prevent overfitting. 

The network has three output layers for predicted 
parameters: binary rain and snow events, and 
precipitation quantity. A custom output layer is applied 
for the binary targets using a sigmoid activation function 
to output probabilities between 0 and 1: 

𝑦𝑦� = 𝜎𝜎(𝑊𝑊out ⋅ ℎ + 𝑏𝑏out), 

where σ is the sigmoid function, 𝑊𝑊out and 𝑏𝑏out are the 
weights and biases, and ℎ is the output from the previous 
layer [7]. 

Handling binary targets like precipitation events 
requires specialized activation functions and loss 
functions. The sigmoid activation function maps the 
output to a range between 0 and 1, suitable for 

representing probabilities. The binary cross-entropy loss 
function measures the discrepancy between the predicted 
probabilities and the actual binary labels: 

𝐿𝐿 = −
1
𝑁𝑁
�[𝑦𝑦𝑖𝑖 log(𝑦𝑦�𝑖𝑖) + (1 − 𝑦𝑦𝑖𝑖) log(1 − 𝑦𝑦�𝑖𝑖)],
𝑁𝑁

𝑖𝑖=1

 

where 𝑦𝑦𝑖𝑖  is the true label, 𝑦𝑦𝚤𝚤�  is the predicted 
probability, and 𝑁𝑁 is the number of samples. 

D. Training the Model
The model is trained using binary cross entropy loss

function, which encourages the model to output 
probabilities close to the true labels. An adaptive 
optimizer like Adam is used with a learning rate of α =
 0.0001 and gradient clipping with a norm threshold of 1 
to prevent exploding gradients. 

While binary cross-entropy is used as the loss 
function during training, we evaluate the model's 
performance using Mean Squared Error (MSE) and 
Huber loss to measure the regression aspects of the 
predictions, especially when dealing with continuous 
representations or probabilities. The Huber loss combines 
the best properties of MSE and Mean Absolute Error 
(MAE), quadratic for minor and linear for significant 
errors, thus being more robust to outliers. 

It should be noted that precipitation events are 
significantly less frequent compared to dry day events for 
temperate continental climate. This leads to class 
imbalance that can bias the model toward predicting the 
majority class. The proposed model currently does not 
address this issue; however, the recommended strategy in 
this case would be to oversample the minority class using 
Synthetic Minority Over-sampling Technique (SMOTE) 
[2] or other similar approaches.

III. RESULTS AND DISCUSSION

From the validation data set, 40 intervals are selected 
randomly, and the precipitation forecast for 31 days 
ahead is made. The calculated series are concatenated and 
evaluated with the following metrics: mean absolute error 
(MAE), root mean squared error (RMSE) and R2 score. 
Table 1 presents the results for these validation metrics.  

In the parameters column, ‘prcp q’ stands for 
precipitation quantity, in mm, and ‘rain’ and ‘snow’ for 
probability of rain and snow events, respectively. For the 
event probabilities, only the days with significant (above 
0.01 mm) precipitation quantities are considered. 

The results demonstrate that our model achieves 
satisfactory accuracy in predicting precipitation and high 
accuracy in predicting rain and snow events across 
different locations. The validation metric values for rain 
and snow are particularly optimistic; however, due to 
filtering out predicted dry days from validation, these 
only account for type I classification error. 

Figure 1.  Architecture of the CNN-BiLSTM model 
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TABLE I. RESULTING VALIDATION METRICS FOR SELECTED 
STATIONS. 

Station Parameter MAE RMSE R2 score 

Zhuliany 

prcp q 1.13 2.57 0.615 

rain 0.048 0.150 0.980 

snow 0.041 0.128 0.963 

Rivne 
prcp q 1.04 2.19 0.505 

rain 0.036 0.066 0.995 

snow 0.019 0.030 0.996 

Poltava 
prcp q 0.98 2.20 0.575 

rain 0.031 0.085 0.985 

snow 0.027 0.045 0.999 

Vinnytsia 

prcp q 0.93 2.22 0.128 

rain 0.077 0.133 0.910 

snow 0.089 0.133 0.807 

Sumy 

prcp q 1.00 2.16 0.420 

rain 0.023 0.043 0.999 

snow 0.039 0.105 0.973 

Average prcp q 1.02 2.27 0.449 
rain 0.043 0.095 0.974 
snow 0.043 0.088 0.948 

For precipitation prediction, the average MAR and 
RMSE are around 1 and 2.27 mm, which is a relatively 
low error for precipitation quantity. However, the R2 
scores vary among stations, ranging from 0.128 in 
Vinnytsia to 0.615 in Zhuliany. While the model 
performs well in most cases, the lower R2 values in some 
of the cases indicate that the quality of prediction has 
certain issues and can further be improved.   

Comparing these findings with our previous study on 
temperature gap-filling, the model demonstrates robust 
performance across different meteorological variables. 
The ability to effectively predict multiple binary targets 
highlights the versatility of the CNN-BiLSTM 
architecture. 

IV. CONCLUSION

This study presents a CNN-BiLSTM model 
architecture for predicting precipitation using calculated 
relative humidity and other meteorological parameters. 
The model leverages feature-specific convolutional 
layers to extract local temporal patterns, BiLSTM layers 

to capture long-term dependencies, and an attention 
mechanism to focus on relevant time steps. Preprocessing 
steps, including calculating relative humidity and scaling 
strategies, are critical for model performance. The model 
achieves high accuracy, as evidenced by the low MAE 
and RMSE values in predicting precipitation, rain, and 
snow. 

Our findings demonstrate that the proposed 
architecture effectively handles mixed data types and 
calculated inputs, making it a valuable tool for 
meteorological forecasting. This approach contributes to 
advancing machine learning applications in meteorology, 
offering a framework that can be adapted and extended 
for various predictive tasks. 

Future work will incorporate additional parameters 
such as wind speed, atmospheric pressure changes, and 
cloud cover to enhance prediction accuracy further. We 
also plan to apply the model to different geographical 
regions and fine-tune it with local data through transfer 
learning. Experimenting with alternative architectures 
like transformer-based models or other attention 
mechanisms may yield further improvements. 
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