
The Case for Asynchronous Language Support
API in an Integrated Development Environment

https://doi.org/10.31713/MCIT.2024.038

Yurii Turbal
National University of Water and Env. Engineering

Rivne, Ukraine
turbaly@gmail.com

Igor Kushnir
National University of Water and Env. Engineering

Rivne, Ukraine
igorkuo@gmail.com

Abstract—This paper explains why adding Language
Server Protocol support to an existing integrated
development environment requires replacing its
synchronous language support API with an asynchronous
one. We explore the possibility of reusing language
support code of other applications during the transition to
the asynchronous API. And finally, we envision
substantial additional benefits of such a transition.

Keywords—integrated development environment;
Language Server Protocol; asynchronous API

I. INTRODUCTION

Software engineers rely heavily on their integrated
development environments (IDEs). Functionality,
convenience, and performance of an IDE can have
significant impact on an engineer’s productivity, speed
and quality of software development.

Most modern IDEs are large and complex
applications. They are often developed for decades by
software engineering teams that change over time. A
new IDE must overcome high barriers of entry to
compete with existing applications and to become
widely used.

Perhaps the most important and difficult problem of
IDE development is programming language support.
Saving effort on this problem is paramount for an IDE
that supports multiple programming languages,
especially when the languages evolve over time.

Language Server Protocol (LSP) is currently without
alternatives in terms of the number of programming
languages that can be supported with little effort.
Compared to the code bases of most popular IDEs, the
protocol is very young – its standardization process
started only in 2016. But the protocol’s success is
tremendous: in the early 2020s the LSP became a de-
facto standard in the IDE market [1].

KDevelop is a well-established free/libre, cross-
platform IDE. This IDE currently supports four
programming languages well: C++, C, Python, and
PHP. KDevelop’s language support architecture dates
back to 2007 and is not compatible with the much newer
LSP standard.

II. RELATED WORK

Paper [2] aims to reduce the effort required to
implement IDE support for less popular programming
languages and proposes a new parse-based design for
language servers. Paper [3] analyzes the
implementations of existing language servers and
synthesizes implementation practices. Paper [4]
describes writing a new IDE from scratch using the
LSP.

However, the problem of integrating the LSP into an
existing IDE is insufficiently researched and
documented. This paper aims to fill the gap. Improving
an existing IDE circumvents the high barriers of entry
and has an immediate positive impact on the
productivity of software engineers that use it.

III. OVERVIEW OF THE LANGUAGE SERVER PROTOCOL

In order to perform its functions, e.g. syntax
highlighting, code completion, navigation, an IDE must
“understand” programming languages. Traditionally
each IDE implemented language support separately and
independently from other IDEs. At best, an IDE
provided a custom application programming interface
(API) to language module (plugin) developers. The
work required to support n languages in m IDEs was
then O(n⋅m). Popular programming languages are never
complete, new standard versions are released regularly.
Therefore, language support code has to be regularly
revised and updated. In practice, this meant that an IDE
supported well at most a tiny number of languages.

The idea behind a language server is to encapsulate
knowledge of a programming language inside a server
that can communicate with development tools, such as
IDEs, over a protocol that enables inter-process
communication. The idea behind the Language Server
Protocol is to standardize the protocol for how tools and
servers communicate, so that a single language server
can be reused in multiple development tools, and tools
can support languages with minimal effort [5]. This
reduces the work required to support n languages in m
tools (IDEs) to O(n+m).

A language server runs as a separate process and
development tools communicate with the server using
the language protocol over JSON-RPC. An example for
how a tool and a language server communicate during a
routine editing session is displayed on Fig. 1.

136

https://doi.org/10.31713/MCIT.2024.038
mailto:turbaly@gmail.com
mailto:igorkuo@gmail.com

Modeling, control and information technologies – 2024

2

Figure 1. Example of LSP client-server communication [5]

IV. OVERVIEW OF THE DUCHAIN FRAMEWORK

“Duchain” is the name of a long-standing language
support framework of the KDevelop IDE. The name of
the framework is derived from a data structure that
represents a source code file. The Duchain
documentation [6] describes the framework in detail and
is heavily quoted in the next four paragraphs.

The Definition-Use Chain (abbreviated as duchain)
is a sequence of contexts in a source code file, and the
associated definitions which occur in those contexts. A
simplified way of thinking about it is that for each set of
brackets (curly {} or not ()), there is a separate context.
Each context is represented by an object of the type
KDevelop::DUContext. Each context has a single parent
context (except for the top-level contexts, which have
none), and any number of child contexts (including
none). Additionally, each context can import any
number of other contexts. Thus, the
KDevelop::DUContext structure resembles a directed
acyclic graph.

These DUContext objects are created during the first
pass after parsing the code to an abstract syntax tree
(AST). Also, at this stage the data types are parsed, and
any declarations, which are encountered, are recorded
against the context in which they are encountered in.
Each declaration is represented by a
KDevelop::Declaration object.

Creating a definition-use chain for a programming
language requires implementing the following:

• a parser for the language,

• a context builder,

• a type builder,

• a declaration builder,

• a use builder.

Code completion support requires further work
specific to the programming language.

Numerous duchain-based plugins have been
implemented to let KDevelop support different
programming languages. Unfortunately, most of these
plugins have never been completed. Even some
completed plugins are not regularly maintained and
eventually stop working in latest KDevelop version.

KDevelop is primarily a C++ IDE, so its C++
language support plugin traditionally benefits from
abundant developer attention. After all, KDevelop is
written in C++, and its code is usually developed in
KDevelop itself. The first such plugin had supported
C++ language features heuristically. Since 2011, a new
C++ language standard is published every three years.
The rapid language evolution makes supporting all the
new features heuristically a maintenance nightmare.
Because of that, a new plugin was developed based on
libclang. Libclang is the C Interface to one of the few
major C++ compilers – Clang. Eventually, the old
heuristic plugin was removed as rarely used and no
longer maintained.

V. INTEGRATING THE LANGUAGE SERVER PROTOCOL
INTO KDEVELOP

Both C++ plugins and all other KDevelop language
plugins are based on the Duchain framework. Once
built, a definition-use chain can be examined and
navigated using a synchronous API (without callbacks).
Numerous high-level IDE features, such as code
completion, semantic code highlighting, context
browsing, identifier details and documentation, quick
open, are implemented in terms of the long-lived
duchain API and depend heavily on its synchronous
nature.

A definition-use chain is built from an abstract
syntax tree and contains a sequence of contexts that
represent regions of code. An LSP client cannot possibly
create a duchain, because the LSP API is much higher-
level than that. The closest that an LSP server reply can
offer is a list of symbols (the Document Symbols
Request), that is, a list of variables, types, functions,
numbers, etc. [7]

An LSP server resides in a separate process, so an
LSP client cannot implement a synchronous API

137

Modeling, control and information technologies – 2024

required by high-level KDevelop features efficiently. A
new asynchronous API has to be designed to properly
integrate the LSP into KDevelop. The high-level IDE
features must be ported to the asynchronous API. And
the asynchronous API must be implemented using the
existing synchronous duchain API to keep existing
language plugins working. Finally, a new plugin that
implements the asynchronous API using the LSP can be
developed.

Such a proper integration of the LSP would vastly
decrease the effort required to add new language support
to KDevelop and maintain it over the long term. The
LSP language support would likely be more complete
compared to rarely maintained duchain-based plugins.

The LSP is not perfect or complete, but evolves over
time. Integrating the LSP into yet another feature-rich
IDE is bound to reveal functionality gaps or defects in
existing features of the protocol. This can lead to
improvements of the LSP standard and benefit all IDEs
that use it.

VI. POSSIBLE REUSE OF EXISTING LANGUAGE SUPPORT
INTERFACES AND IMPLEMENTATIONS

The implementation of KDevelop is based on the Qt
application development framework and on the KDE
Frameworks (a set of Qt add-on libraries). In particular,
many of KDevelop’s syntax highlighting and text
editing features are implemented by the
KSyntaxHighlighting and KTextEditor KDE
frameworks. A free/libre, cross-platform text editor
application Kate is also based on these two frameworks
and is maintained by the frameworks’ developers
themselves. An LSP client plugin for Kate was first
released in 2019 and keeps evolving [8]. However,
programming language support is a central feature of an
IDE but only an optional add-on feature of a text editor.
Therefore, the LSP should be integrated much more
tightly in KDevelop than in Kate. Still, Kate’s LSP
client plugin can be used as a solid starting point of the
future LSP plugin for KDevelop, because the two code
bases are closely related.

Qt Creator is another free/libre, cross-platform,
primarily C++ IDE. It is implemented using the same
application development framework as KDevelop – Qt,
though it does not depend on the KDE frameworks.
Therefore, analyzing Qt Creator’s approaches can offer
insights into language support API redesign for
KDevelop; parts of Qt Creator’s LSP client
implementation can potentially be reused.

Qt Creator had traditionally supported C++ language
features heuristically, similarly to how KDevelop was
doing it before the libclang-based plugin. Then a clangd
Qt Creator plugin arrived. Clangd is a C++ language
server based on the Clang C++ compiler. Clangd’s C++
language support is much more complete than that of the
heuristic parser. But Qt Creator still offers an option to
disable the clangd plugin and use the old parser instead,
because it uses much less random access memory
(RAM). Thus Qt Creator supports two very different
C++ language support backends. We aim to achieve a
similar result in KDevelop for C++ and other languages:
support both the duchain and the LSP backends. Qt

Creator also offers specialized support for Python,
QML, and Java language servers, which proves that its
language support interfaces are not limited to C++.

An example of a language support interface specific
to C++ is Qt Creator’s
CppEditor::ModelManagerSupport abstract class,
which offers API such as void followSymbol(const
CursorInEditor &data, const Utils::LinkHandler
&processLinkCallback, FollowSymbolMode mode, bool
resolveTarget, bool inNextSplit) and void
findUsages(const CursorInEditor &data) const. The
interface is inherited by two classes
BuiltinModelManagerSupport (heuristic) and
ClangModelManagerSupport (clangd). The interface is
necessarily asynchronous, because the clangd language
server lives in a separate process. Therefore, the API
member functions return void, and std::function
callbacks are used to allow asynchronous
implementations reply to requests in their own time.

VII. OTHER BENEFITS OF ASYNCHRONOUS LANGUAGE
SUPPORT API

Besides enabling the LSP integration, asynchronous
language support API also helps to address other long-
standing IDE problems. Two such problems that affect
KDevelop are described below.

A synchronous call to a language-support library’s
(e.g. libclang’s) function or to a higher-level IDE
function can take a long time and freeze the user
interface (UI) for seconds. This annoys, distracts, and
demotivates software engineers that use the IDE.
Asynchronous API allows improving UI responsiveness
by performing the most time-consuming work in
separate threads or even separate processes, and leaving
the main UI thread free to handle user interactions.

Bugs in language-support libraries can make them
crash. When core, language support, and UI code of an
IDE resides in a single common process, such a crash
brings down the entire IDE. Fixing bugs like this in
huge language-support libraries, such as libclang, can be
very time-consuming, especially for IDE developers
who are not well-versed in the implementation details of
the libraries. When language support code, including an
external library, resides in a separate process, only that
process alone crashes. Then the main IDE process can
restart the language-support process, and the user would
experience only the minor inconvenience of temporary
interruption of language-related updates, or possibly not
even notice the crash at all. Asynchronous API is the
necessary first step in moving language support code
into a separate process.

ACKNOWLEDGMENT
Special thanks to KDevelop developers Milian

Wolff and Sven Brauch for ideas about how to properly
integrate the LSP into KDevelop.

REFERENCES
[1] D. Bork and P. Langer, “Catchword: Language Server Protocol:

an introduction to the protocol, its use, and adoption for web
modeling tools,” Enterprise Modelling and Information Systems
Architectures, vol. 18, no. 9, pp. 1–16, 2023.

138

Modeling, control and information technologies – 2024

[2] S. Marr, H. Burchell, and F. Niephaus, “Execution vs. parse-
based language servers: tradeoffs and opportunities for
language-agnostic tooling for dynamic languages,” in
Proceedings of the 18th ACM SIGPLAN International
Symposium on Dynamic Languages (DLS ’22), December 07,
2022, Auckland, New Zealand, pp. 1-14.

[3] D. Barros, S. Peldszus, W. K. G. Assunção, and T. Berger,
“Editing support for software languages: implementation
practices in language server protocols,” in ACM/IEEE 25th
International Conference on Model Driven Engineering
Languages and Systems (MODELS ’22), October 23–28, 2022,
Montreal, QC, Canada. ACM, New York, NY, USA, 12 pages.

[4] N. Mitchell, M. Kiefer, P. Iborra, et al., “Building an integrated
development environment (IDE) on top of a build system: the

tale of a Haskell IDE,” conference: IFL 2020: 32nd Symposium
on Implementation and Application of Functional Languages.

[5] The LSP overview. URL: https://microsoft.github.io/language-
server-protocol/overviews/lsp/overview/

[6] The Duchain framework documentation. URL:
https://commits.kde.org/kdevelop?path=kdevplatform/language/
duchain/Mainpage.dox

[7] The LSP specification. URL:
https://microsoft.github.io/language-server-
protocol/specifications/lsp/3.17/specification/

[8] The LSP Client Plugin for Kate documentation. URL:
https://docs.kde.org/stable5/en/kate/kate/kate-application-
plugin-lspclient.html

139

https://microsoft.github.io/language-server-protocol/overviews/lsp/overview/
https://microsoft.github.io/language-server-protocol/overviews/lsp/overview/
https://commits.kde.org/kdevelop?path=kdevplatform/language/duchain/Mainpage.dox
https://commits.kde.org/kdevelop?path=kdevplatform/language/duchain/Mainpage.dox
https://microsoft.github.io/language-server-protocol/specifications/lsp/3.17/specification/
https://microsoft.github.io/language-server-protocol/specifications/lsp/3.17/specification/
https://docs.kde.org/stable5/en/kate/kate/kate-application-plugin-lspclient.html
https://docs.kde.org/stable5/en/kate/kate/kate-application-plugin-lspclient.html

	MCIT2024 137
	MCIT2024 138
	MCIT2024 139
	MCIT2024 140

