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 Abstract –   This article deals with new possibilities of 
using mathematical modelling for optimization in the field 
of hydraulic engineering elements. Optimization allows to 
increase the performance of structures while reducing 
investment costs. An interesting area is the shape 
optimization of hydropower plant structural elements. 
Demonstrations of the use of CFD will also cover the area 
of design of custom hydro turbines.  
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I. INTRODUCTION 

In recent years, advancements in hardware 
performance have driven significant progress in CFD 
optimizations. While these optimizations are 
predominantly applied in mechanical engineering sectors 
such as turbines, aircraft, and ships, the field of hydraulic 
structures has lagged in adopting modern approaches. 
This disparity arises from the unique challenges and 
problems inherent to hydraulic engineering. Hydraulic 
structures are highly diverse and often atypical, featuring 
a wide range of water flow regimes. Consequently, they 
require bespoke solutions, as mass production is virtually 
non-existent in this field. 

 to create these components, incorporating the 
applicable criteria that follow. 

II. CFD FOR OPTIMIZATION OF HYDRAULIC
STRUCTURES 

Optimization of hydraulic structures is often 
constrained by the complexity and scope of 
computational tasks, as well as the demand for high 
accuracy, especially given the large dimensions of these 
structures. To maximize computational efficiency while 
maintaining sufficient accuracy and credibility, it is 
essential to simplify tasks as much as possible. 
Additionally, due to the scale of the structures, it is often 
necessary to limit the number of parameters describing 
their shape. This involves performing a sensitivity 
analysis to evaluate the impact of various parameters on 
the target objective function, allowing for the exclusion 
of parameters with minimal relevance before proceeding 
with optimization. 

For instance, in the optimization of emergency 
spillways, bottom outlets, weirs, and navigation locks, it 
is often necessary to limit the number of parameters 
describing their shape. This involves performing a 
sensitivity analysis to evaluate the impact of various 
parameters on the target objective function, allowing for 
the exclusion of parameters with minimal relevance 
before proceeding with optimization. 

Figure 1.  Klabava emergency overspill 

Thanks to the CFD model we can obtain the exact 
water levels, velocities, tangential stresses, loads on given 
parts of hydraulic structures, under-pressure for 
cavitation assessment etc.   

At the same time, it is advisable to examine the basic 
parameters of the spillway, especially the rating curves, 
i.e. the relationship between the elevation of the head
water and the flow rate.
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The optimization of hydraulic structures can be 
evaluated based on various criteria, such as the 
complexity of their shapes (standard, atypical, 
combinations, etc.) and the type of flow (steady vs. 
unsteady, single-phase vs. two-phase, etc.). A crucial 
aspect for practical applications is the economic benefits, 
which can be categorized into three types.  

The first type involves revenue-enhancing 
optimizations of the design, such as intake structures of 
hydroelectric power plants (HPPs). The second type 
focuses on designs that reduce financial costs without 
direct financial returns, like the capacity of a spillway. 
The third type aims to meet specific construction criteria, 
such as optimizing the shape of the outflow section of an 
HPP to limit velocities and ensure safe navigation. 

The increasing use of spatial models of structures, 
enriched with additional information (e.g., Building 
Information Modeling - BIM), and the growing 
integration of numerical flow modeling in the design of 
large water structures, contribute to reducing the overall 
cost of the optimization process. We anticipate that, with 
the advancement of these techniques, there will be a 
gradual and more widespread adoption of optimization 
processes in the field of hydraulic structure optimization. 

III. CFD FOR HYDROPOWER

CFD plays a very important role especially in the 
hydropower industry. Shape optimization of structures 
can result in reduced hydraulic losses, improved turbine 
inflow conditions. Increased homogeneity of the velocity 
field, reduced turbulence and pressure pulsations will 
translate into increased turbine efficiency, calming the 
operation of the entire system while extending the 
lifetime of a very expensive piece of equipment.  

On the Odra River near Ratowice, Poland, the 
construction of the Ratowice SHPP on the right bank 
above the weir and the left-bank branch of the navigation 
canal is planned. The study aims to evaluate the 
suitability of two original variants of intake structures in 
terms of hydraulic losses and terms of homogeneity of the 
velocity field in front of fine trash racks. Another task is 
to identify areas that will pose a risk for sediment 
deposition. The variant was assessed by CFD analysis. 

Figure 2.  Example of low head HPP intake simulation  

Based on the evaluation of two initially proposed 
variants, a third - compromise variant was subsequently 
presented. A total of 6 simulations were performed on 
three shape models of inlet objects. Concerning hydraulic 
losses, the most advantageous is the newly designed 
model III, which is also the shortest and, concerning the 

length of vertical structures, the least investment 
intensive. 

A practical demonstration shows optimization of the 
hydraulic design process of the whole turbine and shape 
optimization of blades. The fully parametric model of the 
entire turbine was created by CAESES ® software. After 
sensitivity analysis, the main hydraulic shape of the 
turbine was fixed. Free parameters include those 
describing the shape of guide vanes and runner blades and 
their mutual position.  

The hydraulic performance of the turbine is evaluated 
based on flow simulation in CFD software ANSYS 
CFX® with the use of structured grids created in ANSYS 
TurboGrid®. For quick decision making, we use a 
stationary flow model calculation of components or a 
flow model of the whole turbine. The subjects of this 
evaluation are hydraulic efficiencies of turbine 
components and the whole turbine, cavitation 
characteristics and alternatively, additional parameters, 
e.g. the forces and torque on guide vanes.

Sensitivity analysis showed the influence of single
parameters on required hydraulic characteristics. In the 
case of guide blades, we tested the effect of shape 
parameters on the hydraulic efficiency and torque 
loading. As for the runner blade, we tested the effect of 
shape parameters on its hydraulic efficiency, cavitation, 
and turbine discharge. Hydraulic efficiency and 
cavitation properties were improved by the optimization 
cycle using the MOGA algorithm built-in Dakota module 
of CAESES®. The most suitable shape was chosen for 
subsequent testing. 

Figure 3.  Workflow for automatic runner shape optimization  
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