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Abstract — This paper presents the application 
of the Monte Carlo method for modelling order 
fulfilment, taking into account supply risks and 
delays. The method allows for the consideration of 
stochastic events and uncertainties in supply chains, 
which are becoming increasingly complex and 
vulnerable to various risks, such as production 
failures, transportation issues, and external factors. 
Using probabilistic distributions, the Monte Carlo 
method enables forecasting the frequency and 
impact of delays, supporting proactive decision-
making in logistics management. The developed 
model assesses the likelihood of on-time order 
fulfilment under uncertainty, demonstrating the 
effectiveness of Monte Carlo simulations. The 
simulation results provide insights into delay 
patterns, risk factors, and potential strategies for 
minimizing them, creating opportunities for supply 
chain optimization. 
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uncertainty, stochastic events, forecasting, 
optimization. 

Introduction 

The Monte Carlo method is increasingly pivotal in 
the simulation of order fulfilment processes, 
particularly within supply chains characterized by 
numerous risks and uncertainties. In environments 
where deliveries may be disrupted by a multitude of 
factors—ranging from production failures and 
transportation issues to weather events and political 
instabilities—traditional planning methods often prove 
inadequate. In contrast, the Monte Carlo approach 
enables the modelling of a broad spectrum of scenarios, 
incorporating the stochastic nature of these disruptions 
effectively. This method’s significance lies in its ability 
to simulate random events and uncertainty, making it 
especially relevant for contemporary supply chain 

management. For example, delays can be modelled 
based on established probabilistic distributions, 
allowing for the forecasting of both the frequency and 
severity of potential disruptions. A Poisson distribution, 
for instance, can be utilized to represent the frequency 
of delays or failures, enabling a probabilistic 
assessment of such occurrences. In this framework, 
each event is treated as an independent simulation, and 
the larger the number of simulations, the greater the 
precision in the resulting predictions. This approach 
provides a strategic advantage in contexts where 
reactive problem-solving is insufficient or impractical. 
By employing the Monte Carlo method, organizations 
are better equipped to anticipate potential disruptions 
and develop preemptive strategies, thereby enhancing 
resilience and optimizing overall supply chain 
performance. The flexibility of the Monte Carlo method 
is evident in its adaptability to diverse conditions. For 
instance, if lead times are known to follow a normal 
distribution, this distribution can be directly applied. 
Alternatively, in cases where the distribution is 
asymmetric, a beta distribution may be employed 
instead. This adaptability makes the Monte Carlo 
method a versatile tool for analyzing a range of 
logistics challenges, whether forecasting delivery times, 
assessing risks associated with product spoilage, or 
evaluating the impact of delays on the entire supply 
chain. The results of these simulations provide a strong 
basis for data-driven decision-making. Management 
can utilize this information to assess the potential 
impact of supply chain adjustments on overall order 
fulfilment times, empowering them to implement 
strategic policy changes, such as adding contingency 
routes, increasing inventory levels, or partnering with 
new suppliers. Simulation analysis also allows for 
proactive identification and mitigation of supply chain 
vulnerabilities, helping to enhance overall resilience 
and efficiency. As global supply chains grow more 
complex, they face heightened exposure to diverse 
risks—ranging from financial and political disruptions 
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to environmental and social challenges. This exposure 
highlights the essential need to incorporate a variety of 
risk factors and simulate potential scenarios. In this 
context, the Monte Carlo method is invaluable, 
enabling the modelling of even rare, high-impact 
events. By simulating such scenarios, companies can 
reduce potential losses and build greater resilience into 
their supply chain, equipping them to respond more 
effectively to unexpected disruptions. Another 
significant aspect of the Monte Carlo approach is its 
application in logistics optimization. When simulations 
indicate that certain routes may lead to delays, 
companies can make proactive adjustments to their 
delivery plans. This not only reduces the costs 
associated with disruption recovery but also increases 
the reliability of order fulfilment, an outcome that is 
particularly valuable for maintaining client satisfaction. 
Contemporary challenges, including pandemics, 
climate change, trade conflicts, and other global factors, 
further underscore the critical importance of Monte 
Carlo simulations in modern supply chain management. 
Today’s supply chains operate amid unprecedented 
levels of uncertainty, which conventional planning 
methods struggle to address comprehensively. The 
Monte Carlo method, however, enables the modelling 
of various "what-if" scenarios, providing a robust 
framework for anticipating a broad spectrum of 
potential disruptions. Fundamentally, this approach 
serves as a powerful tool for both risk management and 
efficiency optimization. By simulating diverse 
scenarios, the Monte Carlo method enables 
organizations to evaluate the resilience of their 
operations under fluctuating conditions, thereby 
identifying not only risk factors but also opportunities 
for enhanced efficiency. This capability becomes 
particularly essential as businesses increasingly pursue 
flexible, adaptive management strategies, emphasizing 
a proactive approach to operations rather than merely 
reactive responses to emerging issues. 

The primary contributions of this article are as 
follows: 

1. Application of the Monte Carlo method for
simulating order fulfilment under supply chain 
uncertainties. 

2. Incorporation of delay and disruption risks into
the forecasting model, enhancing its practical 
applicability. 

3. Development of a mathematical model for
estimating the probability of on-time order fulfilment, 
thereby improving planning accuracy. 

4. Analysis of the impact of uncertainty on logistics
processes, supporting increased resilience and 
flexibility within supply chains. 

The remainder of this article is organized as 
follows: Section 2 provides a literature review, 
emphasizing the importance of risk analysis and the 
application of the Monte Carlo method for assessing 
risks in supply chains to mitigate delays. Section 3 
formulates the research problem, focused on predicting 
order fulfilment times considering risks and delays, 
with a formal approach to calculating the probability of 

timely completion. Section 4 describes the Monte Carlo 
method for modelling probabilistic scenarios and 
outlines an algorithm covering the key steps, from 
initialization to the assessment of statistical 
characteristics. Section 5 presents the simulation 
results, demonstrating the impact of uncertainty levels 
on order fulfilment times and delay risks, supported by 
diagrams and visualizations.  The final Section 
discusses the Monte Carlo method as an effective tool 
for risk management and enhancing supply chain 
flexibility, particularly under conditions of global 
uncertainty. 

2. Relevant work

These articles explore diverse applications of the 
Monte Carlo method for risk modelling in order 
fulfilment, offering insight into how this approach 
facilitates managing uncertainty and mitigating the 
effects of delays within supply chain operations. 
Presented here are examples of studies that employ 
Monte Carlo simulations to model order fulfilment 
under supply risk conditions. Paper [1] introduces a 
model for evaluating the impact of tactical procurement 
risks on order fulfilment in make-to-order production, 
with a specific focus on risks like delays, price 
volatility, and quality fluctuations that critically 
influence timely order completion. In Paper [2], a 
comprehensive review is conducted on supply chain 
risk management, emphasizing the role of Monte Carlo 
simulations in quantifying risks from delivery delays 
and logistical disruptions. The authors underscore the 
necessity of quantitative risk assessments in devising 
effective mitigation strategies. Paper [3] elaborates on 
the combined use of Monte Carlo and discrete-event 
simulations to quantitatively assess supply chain 
disruption risks, proposing a model for analyzing the 
effects of different types of risks, including delays and 
operational interruptions, on order fulfilment. Paper [4] 
examines supplier selection methodologies with a focus 
on resilience to disruptions, employing Monte Carlo 
simulations to quantify risk exposure and predict delay 
probabilities under various disruption scenarios. Paper 
[5] addresses strategies to mitigate supply chain
disruption risks, utilizing Monte Carlo simulations to
assess delay probabilities while highlighting practical
approaches to risk management and minimizing
impacts on business operations. In the paper [6], the
authors present a conceptual and analytical framework
for supply chain risk management, with a detailed
exploration of how Monte Carlo simulations are applied
to calculate the likelihood of failures and delays and to
evaluate their effects on logistical processes. Paper [7]
outlines a systems-based approach to risk modelling in
supply chains using Monte Carlo simulations,
examining the impact of various uncertainty sources,
such as delays and breakdowns, on the efficiency of
order fulfilment and supply chain resilience. Paper [8]
discusses dynamic recovery strategy development for
supply chains susceptible to cascading disruptions,
using Monte Carlo modelling to simulate recovery
scenarios and evaluate order fulfilment timelines under
delay risks. Finally, the paper [10] provides a critical
review of methodologies for designing resilient supply
chains and value networks, incorporating Monte Carlo
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simulations to assess and optimize order fulfilment 
processes amid supply uncertainty.  

The objective of this study is to develop and apply 
the Monte Carlo method for modelling order fulfilment 
processes undersupply and delay risk conditions. This 
involves constructing a mathematical framework 
capable of predicting the likelihood of on-time order 
fulfilment amid uncertainty and examining the 
influence of multiple risk factors on logistics. This 
approach aims to strengthen supply chain resilience and 
adaptability, providing robust support for decision-
making under uncertainty. 

3. Problem Statement 

The task of applying the Monte Carlo method for 
simulating order fulfilment while accounting for supply 
risks and delays is formulated as follows: Given a set of 
orders , the goal is to determine the probability of 
each order being completed within specified deadlines. 

. The order completion time  has a distribution 
, that incorporates uncertainties. Additionally, 

delay risks.   And delay time distributions.  Are 
introduced, which are associated with various types of 
failures. The simulation involves repeatedly generating 
random variables representing.  and , where  Is 
the delay caused by the  -th risk for order . The total 
completion time of an order in each iteration of the 
simulation is , where the probability of  
Occurring is determined by parameters. . After 
performing a  large number of iterations , the 
distribution of total completion times is assessed, along 
with the probability that it does not exceed . Based on 
the statistical data obtained during the simulation, 
metrics are calculated, such as the probability of on-
time completion. , the mean completion 
time, and measures of variability. 

4. Materials and methods 

4.1 Monte Carlo method 

The Monte Carlo method was first proposed in the 
1940s by physicists Stanislaw Ulam and John von 
Neumann. The name "Monte Carlo method" was 
introduced because it was associated with the gambling 
activities at the Monte Carlo casino, reflecting the use 
of random (stochastic) processes in the method. The 
first systematic description and application of the 
Monte Carlo method were presented in the work [10]. 
The Monte Carlo algorithm involves using random 
simulation to numerically solve various problems 
involving uncertainties and probabilistic processes. In 
this context, it is used to estimate event probabilities or 
statistical characteristics of complex systems. The 
algorithm includes several key steps, which can be 
detailed as follows: 

Step 1: Initialization 

Setting the initial state of the system. The initial 
state of the system is determined X(0), including the 
values of all state variables (e.g., initial resource 
stocks). This can be a single vector of values or a set of 
initial conditions considering different possible initial 
situations. 

Definition of distributions of random variables. 
Defines probability distributions for all random 
variables involved in the model, such as resource 
supply  and demand . These can be normal, 
lognormal, Poisson or any other distributions reflecting 
the nature of stochastic processes in the system. 

Determination of time parameters. The time step 
is set and the total number of modeling steps  , to 
set the duration of the simulation . 

Step 2: Trajectory generation. For each simulated 
scenario, time-step iteration is performed to simulate 
the evolution of the system state. This process can be 
detailed as follows: 

Trajectory Initialization. Starts from the specified 
initial state X(0). 

1.  Time iteration. Для каждого временного 
шага  ,…,T: 

•  Generation of random variables. Random 
values are generated for all quantities such as  
and , using the given probability distributions. 

• b. Solving the dynamic model. The system 
status is updated  According to a dynamic 
model described by a system of stochastic 
differential equations (SDE): 

 
(1) 

Or, in discrete form: 

, 
(2) 

where  describes the deterministic evolution 
of the system, and  There's a stochastic 
component. 

2. Trajectory Recording. The values obtained are 
stored  for each time step to fully describe the 
trajectory of the system state. 

Step 3: Repeat trajectory generation.  

The trajectory generation process from Step 2 is 
repeated many times (e.g., N times) to construct a 
statistically significant sample of possible system 
evolutions. Each trajectory represents one possible 
realization of the system evolution taking into account 
random perturbations. 

Step 4: Estimation of probabilities or statistical 
characteristics.  

Defining the target event.  A criterion is 
specified for the event whose probability is to be 
estimated. For example, event A may represent a 
situation where the stocks of all resources remain 
above zero throughout the simulation period: 

 (3) 

Counting successful realizations. The number 
of trajectories is determined.  , for which the 
event  occurred, i.e. the conditions of the task 
were fulfilled. 
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Calculating the probability of an event. The 
probability of the target event is estimated using 
the formula: 

, (4) 

where  is the number of trajectories that 
satisfy the criterion, а  is the total number of 
generated trajectories. 

Step 5: Estimation of statistical indicators 

If it is required to estimate not only the probability 
of an event, but also other characteristics (e.g., mean, 
variance), the correspondig indicator is calculated for 
each trajectory, and a statistical characteristic is 
calculated from the results of all trajectories. For 
example, the mean value  and dispersion are 
estimated according to the formulas: 

(5) 

, (6) 

where  is the result of the 𝑖𝑖th trajectory. 

Thus, the Monte Carlo method can be used to 
numerically solve problems related to uncertainties and 
random processes, allowing us to estimate probabilities 
of complex events and calculate statistical 
characteristics. Its application is also appropriate for 
logistic activities. 

4.2 Modeling of order fulfillment 

To mathematically describe the steps of the 
algorithm aimed at modelling possible delivery delays 
using the Monte Carlo method, we present the main 
steps: 

1. Problem statement and initial data
The task of modelling delivery delays is defined as

a random process depending on the probability of 
delays and delivery lead time. Input data include: 

 Lots of orders  , where every 
order  characterized by: 

Expected lead time , 

Probability of delay  . 

 Multiple deliveries , where for 
each delivery  delay probability is set and the 
length of the delay . 

2. Delay modelling by Monte Carlo method
At each modeling stage for each order   one of the

possible delay scenarios is selected. For this purpose, a 
sample of delays is created, where: 

The delay scenario is sampled according to the law 
of probability distribution  per shipment : 

(7) 

Here  denotes a random delay value for the order 
 in the event of a delay event. 

Updated delivery time  for ordering on 
account of the delay  is calculated as: 

(8) 

This value represents the order fulfillment time 
including possible delays. 

3. Estimation of entropy as an indicator of
uncertainty 

For an order with multiple possible outcomes (e.g., 
on-time delivery or delays of different durations), 
entropy can be calculated for the total uncertainty 
estimate based on the probability distribution of 

different delay scenarios. Formally, if X is a random 
variable denoting the fulfilment status of an order with 
n possible outcomes, then the entropy H(X) is defined 

as: 

(9) 

where  there is a probability of delay for each 
scenario  in a sample of possible outcomes. This 

indicator is a metric of randomness and allows 
quantifying the impact of uncertainty on the expected 

lead time. 

Calculation of metrics to analyze results 

Statistical measures such as average latency are 
calculated to evaluate the performance of the models 

and analyze the data: 

(10) 

Where:  is the total number of orders;  is the 

actual execution time of order  ;  is the planned 

time of fulfilment of order . 

Deviations and standard errors can also be 
accounted for to analyze in detail the probability 
distribution of lead times, allowing the impact of delays 
on operational processes and supply chain resilience to 
be assessed. 

Analysis and interpretation of results 

The simulation results are analyzed to identify delay 
patterns and examine their distribution. Using 
visualizations of order fulfilment time distributions and 
entropy metrics, risks and their potential impact on 
fulfilment times can be assessed. 

Thus, the proposed approach, based on the Monte 
Carlo method, enables the modelling of probabilistic 
delay scenarios in the supply chain by using uncertainty 
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metrics to quantify risk. This method allows for the 
exploration of delay distributions and supports 
informed management decisions to minimize negative 
impacts on the supply chain. 

Explanation of Key Steps 

1. Initialization: Sets up the delay array and
retrieves the current supply risk and delivery time. 

2. Iteration with while...do: Repeats the delay
calculations for a set number of iterations. 

3. Conditional Delay Calculation: Uses random
values to determine if base and supplier delays occur. 

4. Aggregation: Combines base and supplier
delays to produce a total delay for each iteration. 

This pseudocode provides a formal outline of the 
algorithm for simulating delivery delays with Monte 
Carlo methods, using structured logic and probability 
checks. 

5. EXPERIMENT AND RESULTS

Fig.1 Visualization of critical order delays – 25 days 
(X-axis shows order number) 

The chart provides a detailed illustration of critical 
order delays, with each order ID displayed on the x-axis 
and the corresponding maximum delay duration (in 
days) on the y-axis. Each bar represents the peak delay 
recorded for a particular order, highlighted in red to 
denote critical delays. A dashed horizontal line 
indicates an arbitrary "Critical Delay Threshold" (set at 
10 days for this analysis), functioning as a benchmark 
to identify orders that surpass an acceptable delay limit. 
Any bar that exceeds this threshold denotes an order 
with a delay surpassing the critical level, which may 

signal potential operational disruptions, decreased 
customer satisfaction, or increased costs. 

Upon examining the chart, it becomes evident that 
all orders experience delays significantly beyond the 
critical threshold. This observation suggests persistent 
and substantial issues within the supply chain or 
logistics processes. Potential underlying causes may 
include unreliable supplier performance, logistical 
bottlenecks, or inefficiencies in order handling and 
processing. To address these concerns, a deeper 
investigation into the root causes of these delays is 
recommended, followed by the development of targeted 
strategies to mitigate their impact and enhance supply 
chain resilience. 

Fig. 2 Visualization of Planned vs. Simulated 
Delivery Times Comparison 

The chart presents a comparison of planned and 
simulated delivery times across various orders, 
facilitating a deeper analysis of the predictive accuracy 
and practical applicability of the forecasting model in 
supply chain management. The x-axis displays order 
identifiers, while the y-axis represents delivery time in 
days, enabling a quantitative assessment of the 
temporal deviations between planned and simulated 
values. Red dots, representing the actual (or expected) 
delivery times, are overlaid on blue bars that depict the 
simulation results for each order. The visual distance 
between the position of these dots and the height of the 
bars allows for an immediate evaluation of how closely 
the model simulates delivery times. When the red dots 
align with or are very close to the top edge of the blue 
bars, a high level of predictive accuracy can be inferred. 
Such alignment suggests that the model effectively 
captures the key parameters and factors influencing 
delivery, indicating its potential applicability for 
planning purposes. Conversely, where red dots deviate 
significantly from the bar edges—especially when the 
simulated times either overestimate or underestimate 
actual times—discrepancies arise, signalling potential 
model deficiencies or incomplete input data. These 
differences highlight the need for further investigation: 
what caused these deviations? Potential explanations 
include unanticipated delays, unmodeled logistical 
factors unique to certain orders or delivery contexts, or 
limitations within the simulation model itself, such as 
inadequate handling of stochastic variables. This chart 
serves both a visual and analytical function, providing a 
clear indication of where the model requires refinement 
or recalibration. If certain orders consistently exhibit 
large discrepancies between simulated and actual 
delivery times, this may indicate systemic causes, 
suggesting that model adjustments are necessary. 
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Conversely, significant alignment across most data 
points indicates high model validity for the given 
dataset. In both academic and practical contexts, this 
approach allows for more than just average-level model 
evaluation; it enables a critical examination of its 
accuracy on a case-by-case basis, which is especially 
valuable for achieving adaptive and predictive 
management in supply chains. 

Fig. 3 Effect of entropy on order Fulfillment time 

This chart presents a detailed examination of the 
relationship between entropy levels and simulated order 
execution times, intending to evaluate how randomness 
or unpredictability within a system impacts delivery 
timelines. The X-axis, representing entropy, likely 
serves as an indicator of the degree of uncertainty or 
complexity embedded in the order execution process. 
Higher entropy values typically reflect increased 
unpredictability, which theoretically correlates with a 
higher degree of procedural complexity. The Y-axis 
denotes the simulated delivery times in days, providing 
a quantitative measure of order completion time under 
varying conditions of system entropy. 

The red regression lines suggest a positive 
association between entropy and order execution times, 
highlighting a trend where greater unpredictability in 
the system correlates with extended average delivery 
times. This observation can have meaningful 
implications for logistics management and decision-
making processes, suggesting that highly complex or 
stochastic processes may inherently demand longer 
durations for completion. Notably, the dispersion of 
data points (blue markers) around the regression line 
illustrates considerable variance, indicating that while 
there is an observable trend, the dependency is not 
strictly linear. This variability implies that entropy, 
while influential, is likely not the sole determinant of 
order execution time. Other factors, potentially 
structural or external, may significantly contribute to 
variations in delivery timelines. From an academic 
perspective, this chart underscores the potential 
necessity for more sophisticated models to account for 
additional variables and interactions within the order 
execution process. 

In sum, while the observed correlation offers 
valuable insights, it warrants further investigation to 
validate its reliability and applicability. A deeper 
analysis incorporating additional parameters may 
enhance the accuracy of predictions, thus advancing the 
understanding of factors influencing logistical 
efficiency and system responsiveness. 

Fig.4 Relationship between supply chain entropy, 
delivery delay time, delivery risk and delay probability 

The presented petal chart illustrates the complex 
interrelationships between supply system entropy (risk), 
delivery delay time, supply risk, and delay probability. 
This diagram visualizes the influence of entropy levels 
on delivery time, factoring in supply risk and delay 
probability, allowing for an analysis of how these 
variables interact to create a multi-layered picture of 
delivery parameter dependency on system randomness 
or uncertainty, symbolized by entropy. Entropy, 
represented on the X-axis, can be viewed as an 
indicator of logistical system complexity or 
unpredictability, suggesting high uncertainty and an 
increased likelihood that delivery times and reliability 
may deviate from expected parameters. The higher the 
entropy value, the greater the system uncertainty, 
which, in turn, creates conditions for various 
disruptions in the logistics chain that could lead to 
longer delivery times (displayed on the Y-axis), 
especially under high-risk and delay-probability 
conditions. 

A close examination of specific data points reveals 
clustering at certain entropy levels. For instance, at 
lower entropy levels, delivery times remain relatively 
stable, not exceeding 25-27 days. However, with 
increased entropy, data dispersion is observed, 
indicating a broader distribution of delivery times. This 
reflects the heightened variability of the system—
higher entropy makes delivery less predictable, and 
order fulfilment time can vary significantly, often 
exceeding 30 days. Colour coding in the diagram 
illustrates the level of supply risk: from blue and purple 
for low risk to bright red for high risk. Thus, at low 
entropy levels, blue and purple points dominate, 
symbolizing relatively low risk. However, with higher 
entropy values, the number of red points sharply 
increases, highlighting a direct relationship between 
uncertainty and risk. This suggests that complex and 
unstable systems are more often exposed to high supply 
risks, a key factor in delays. Additionally, the point size 
on the chart reflects delay probability, with larger 
points indicating higher delay probability, clustering in 
areas with high entropy and high risk. This suggests 
that delay probability rises as both risk and entropy 
increase. Highly chaotic and uncertain systems likely 
face not only greater challenges in supply control but 
also an increased tendency for disruptions, resulting in 
delays. 

In sum, the diagram reveals a complex and 
nonlinear relationship between entropy level, supply 
risk, delay probability, and delivery time. Rising 
entropy leads to increases in both risk and delay 
probability, ultimately affecting delivery time. This 
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insight emphasizes the importance of managing 
uncertainty in logistics, as even a small increase in 
entropy can lead to a significant decline in delivery 
reliability and increased time costs. 

6. Conclusion

The research findings presented in the article allow 
for more comprehensive conclusions regarding the 
application of the Monte Carlo method for modelling 
order fulfilment while considering risks and 
uncertainties in supply chains: 

1. The Monte Carlo method has confirmed its
capability to model complex supply chains that are 
subject to significant risks. In a globalized environment, 
where supply chains often depend on multiple factors 
(including logistics, politics, climate conditions, and 
production disruptions), this method enables the 
consideration of various scenarios that reflect real 
uncertainty. Thus, it becomes indispensable for 
companies operating in unstable and dynamic markets. 

2. The study demonstrates that accounting for the
risks of delays and supply disruptions allows for a more 
accurate prediction of potential disruptions in the 
supply chain and their impact on order fulfilment 
timelines. Risk-aware modelling methods not only 
identify potential weak points but also forecast the 
likelihood of delays. Consequently, company 
executives can proactively develop strategic measures 
to prevent potential losses—such as ensuring backup 
routes or increasing inventory levels, thereby enhancing 
supply reliability. 

3. The use of various probability distributions
within the Monte Carlo method allows for the 
consideration of the specifics of particular risks and 
delays. For example, a normal distribution may 
describe more predictable risks, while beta or Poisson 
distributions can be employed for rarer but significant 
events. This flexibility renders the model universal and 
more precise, as it enables adaptations to the conditions 
of specific supply chains, which is particularly 
important when assessing rare and catastrophic events. 

4. The Monte Carlo method, as part of the proposed
model, facilitates more informed managerial decision-
making. Through this approach, companies can not 
only anticipate how various risks will impact order 
fulfilment timelines but also take preemptive measures. 
Executives can utilize simulation results to optimize 
logistics—revising routes, increasing stock levels, or 
establishing agreements with alternative suppliers. This 
enhances supply chain resilience and minimizes 
potential financial losses in the face of global and 
regional crises. 

5. The application of the Monte Carlo method as a
tool for risk and uncertainty analysis strengthens the 
resilience of logistics systems. The article notes that 
this method can model even extremely rare events that, 
nonetheless, may have significant impacts on business. 
This capability allows companies to prepare in advance 

for potential crises, including climate disasters, 
epidemics, and political conflicts, making their logistics 
processes more flexible and adaptable to external 
threats. 

6. In light of the rising global risks (such as
pandemics, climate change, and trade wars), the article 
emphasizes the importance of a proactive approach to 
logistics management facilitated by the Monte Carlo 
method. It assists companies in planning their logistics 
processes ahead of time, minimizing reactive decisions 
that may be less efficient and more costly. This 
provides businesses with an advantage in rapidly 
changing market conditions, allowing them to better 
manage risks and adapt to new challenges. 

Thus, this study substantiates the application of the 
Monte Carlo method as a tool for enhancing the 
reliability of supply chains for logistics companies. The 
use of this method not only mitigates the impact of 
delays and disruptions on order fulfilment but also 
fosters a more resilient and adaptive logistics strategy, 
which is especially relevant in the context of global 
instability and increasing uncertainties. 
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