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Abstract— The nonlinear mathematical model of a 

contaminant distribution in unsaturated catalytic porous media 

to the filter-trap in isothermal conditions is presented. The 

mathematical model takes into account the micro and the 

meso/macro scale factors of the heat and mass transfer processes. 

The numerical solution of the respective boundary value problem 

was obtained by the method of finite differences. The analytical 

solution for mass transfer in nanoparticles was presented as well. 
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I. INTRODUCTION

Pesticide use and the disposal of radioactive, biological, 
and chemical wastes can lead to much higher but localized 
levels of soil contamination [1, 2]. 

At the same time, researchers actively investigate heat and 
mass transfer processes on the mezo- and micro levels. For 
example, modern industrial equipment allows the possibility to 
inject special nanoparticles into the soil with the purification 
purpose [3]. Therefore, a lot of scientists around the world are 
involved into creation, developing, verification and validation 
of corresponding mathematical models for the fundamental 
understanding of the various processes of chemical and 
physical migration behaviour taking into account the catalytic 
micro- and nanoporous particles (catalytic porous media) [4–
6].  

On the other hand, the Ukrainian scientific school of 
underground mass transfer processes modelling have presented 
a range of mathematical models for problems of filtration 
consolidation [7, 8], water cleaning in wetland [9], diffusion in 
a multiphase body [10], iron removal from underground water 
[11, 12], stresses-strained state of the earth damps [13, 14], 
flushing process for saline soils [18] etc. Consequently, they 
prepared a good basement for next level of mathematical 

models which may connect together macro- and micro-scaled 
processes of heat and mass transfer.  

II. FORMULATION OF THE PHYSICAL PROBLEM

Let us consider the problem of vertical migration of 

contaminants (e.g., fertilizers, pesticides, radionuclides etc) in 

a layer of soil (Fig. 1). The layer of soil is fulfilled with 

colloid adsorbents (e.g. nanosapropel) for the purification 

process. That is why is called catalytic porous media. 

Figure 1. The process of contaminant migration to the filter-trap in two-

dimentional case 

The pore spaces between the soil grain particles are 

partially filled with water, partially with air (unsaturated zone 

or zone of suspended water). 

At a depth l  in the ground is a filter-trap filled with a 

sorbent (such as vermiculite) is located. There is a piezometric 
pressure on the upper and lower surfaces of the unsaturated 

zone of a soil 1H  and 2H  ( 1 2H H ), respectively. The 

Modeling, Control and Information Technologies - 2019

88



distribution of contaminant concentrations at the initial time 

0t  : 0

1 ( )C x , 0

2 ( )C x , 0

3 ( )C x , and 0 ( , )Q x r  are known. The 

contaminant concentrations 1

1 ( )C t , 1

2 ( )C t and 1

3 ( )C t on the 

upper surface and 2

1 ( )C t , 2

2 ( )C t , 2

3 ( )C t on the level of subsoil 

water are also known. 
It is necessary to build the adequate mathematical model, 

find numerical solution and develop software algorithm for 

further investigation of the 
1( , )c x t , 

2 ( , )c x t , 
3 ( , )c x t and 

( , , )q x r t concentrations distribution on the large filtration area

at a given time steps.  

III. MATHEMATICAL MODEL

Transfer of salts dissolved in water and heat by filtration 

flow occurs under the influence of the pressure gradients and 
the concentration of salts. The filtration of salt solutions and 

the heat transfer proceed in accordance with the generalized 

Darcy’s and Fick’s laws. 

Therefore, the boundary value problem of the contaminant 

migration in a catalytic porous medium in one-dimentional 

nonlinear case was solved using a mathematical model with 

the following equations [15–17]: 

the equation of contaminant migration with concentration 

1c  in a convectively mobile pore solution 

1

1 1

1 1 1

1
1 1 1 2 2

( )

( ) ,

T

c c T
D c D

t x x x x

c
c c c

x

      
      

       


    



(1) 

the equation of contaminant migration with concentration 

2c  located in the water bound with the soil skeleton with 

account for the intraparticle transfer 

2

2 2

2 2

1 1 2 2 3 3

( )

,

T

r R

c c T
D c D

t x x x x

q
c c c

r 

      
     

       


      



(2) 

the equation of contaminant migration with concentration 

3c  located in the soil skeleton 

3

3 3

3 3

3

2 2 3 3 1

( )

,

T

c c T
D c D

t x x x x

с
c c

t

      
    

      


    



(3) 

the equation of intraparticle mass transfer of contaminant 

with current concentration q  

0

2 2 2

0 2 2

2 2
( ) T

q q T T q
D q D

r r r r tr r

       
      

      
,  (4) 

the equation of convective heat transfer 

,T T

T T T
c c

x x x t


    
    

    
(5) 

the equation of moisture transfer

   1

1

, ,

,T

h h
h K h с T

t x x

c T
f

x x x x

  
   

   

     
       
      

(6) 

the generalized equation of the Darcy law in nonisothermal 

conditions for filtration of the salt solutions 

1

1 1( , ) ( ) ,c T

ch T
k c T c

x x x

 
      

  
(7) 

the adsorption isotherm which at  =0 becomes the 

traditional Freundlich isotherm and at β=1 - the Langmuir 

isotherm 

2

2

( , )
( , , )

1 ( , )

f

r R

k c x t
q x r t

c x t








 
, (8) 

boundary conditions for concentrations 
1c , 

2c , 
3c , q and 

piezometric head h
1

1 1 1(0, ) ( ),l c t C t 1

2 1 2( , ) ( ),l c l t C t (9) 

2

3 2 1(0, ) ( ),l c t C t 2

4 2 2( , ) ( ),l c l t C t (10) 

3

5 3 1(0, ) ( )l c t C t , 3

6 3 2( , ) ( )l c l t C t , (11) 

5 1(0, ) ( ),l T t T t 6 2( , ) ( ),l T l t T t (12) 

0( ,0) ( ),h x H x 1(0, ) ,h t H  2( , ) ,h l t H  (13) 

0( ,0) ( ),T x T x  1

1 0( ,0) ( )c x C x , (14) 

2

2 0( ,0) ( )c x C x , 3

3 0( ,0) ( )c x C x , (15) 

0

0
( , , )

t
q Q x у r


 , 

0

( , , , )
0

r

q x y r t

r 





, (16) 

where 
1( , ),c x t 1,D

1TD – concentration, coefficients of

convective diffusion of contaminant and thermodiffision in the 

filtration flow; 
2 ( , )c x t , 

2D ,
2TD – concentration, coefficient 

of molecular diffusion of contaminant and thermodiffision 

coefficient in water connected with soil skeleton; 
3 ( , )c x t , 

3D , 

2TD – concentration, coefficient of diffusion of contaminant in 

soil skeleton and thermodiffision coefficient; ( , , ),q x r t

0D ,
0TD – concentration, diffusion coefficient of contaminant 

and and thermodiffision coefficient in particles with radius R , 

which located in soil skeleton; Tc ; c – specific heats of solid 

and liquid phases; T – thermal conductivity;  1, ,K h с T  – 

coefficient of moisure expansion;  h – coefficient of

moisture capacity; ,fk   – adsorption isotherm coefficients;

 – coefficient of micro- or nanoparticle mass transfer

influence on mass transfer near the ground skeleton;  –

filtration velocity; K – filtration coefficient; 1 , 2 , 3 –

mass transfer coefficients; ,c T  - coefficients of chemical 

and thermal osmosis; 1 – porosity of soil; x  – vertical

coordinate; ,il 1, 6i  – differential operators for boundary 

conditions; t – time, 10 t t  , r - radius (radial variable) 

0 r R  . 
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IV. NUMERICAL SOLUTION

The complicated boundary-value problem (1)-(16) have 
been solved with different numerical approaches. The finite 
difference method was used in general. Therefore, the 
difference grid was introduced for the variables x, r, t with the 
steps h1, h2, and τ accordingly: 

 
1 2

1 2

1 2 3

1 1 2 3

, , ,

0 , 0 , 0 ,

, ,

i j k

h h i j k

 x ih   r jh t kτ   

ω x ,r ,t  i ,n   j ,n k ,n

h n = l,  rn R τn T



    
  

    
  
  

(17) 

Equations (1), (3), (5), (6), (7) have been discretized with 
the Samarskii monotonic difference scheme, and equation (2) 
with an implicit difference scheme [19]. Let us show the 
mathematical manipulation for equation (1). At the first, we 
have been wrote the finite-difference analogue of the 
corresponding differential equation (1): 

( 1) ( 1)

1, 1 1,( )

1, 1( 1) ( ) ( )
11, 1,

1 ( 1) ( 1)
1 1, 1, 1( )

1,

1

( 1) ( 1)( )
1, 1 1,( )

1, 1( )

11,

( 1) ( 1)( )
1, 1, 1( )

1,( )

1,

( )

( )

k k

i ik

ik k k
i i i

k k

i ik

i

k kk
i iki

ik

i

k kk
i iki

ik

i

c c
d

hc c

h c c
d

h

c cr
d

hD

c cr
d

D

 





 



 




 


 
 

   
    

  
 


 




1

1

1

( 1) ( 1)

( ) 1

1

1( 1) ( 1)

1 1, 2 2, ( 1) ( 1)
1 ( ) 1

1

( )
1

,

( )

k k

k i i

T i

k k

i i k k

k i i

T i

h

T T
d

h
c c

h T T
d

h

 





 

 





 
 

    
 
 
 
 

(18) 

1

(0) 0 ( ) 1 ( ) 2

1, 1 1,0 1 1, 1

1 3

( ), ( ), ( ),

1, 1, 0, .

k k

i i k n kc C x c C t c C t

i n k n

  

  
(19) 

The next notation was used here: 

( ) ( )

1 1 1( )

1, ,
2

k k

,i ,ik

i

D D
d




( ) ( ) ( )

1, 1 1,( , ),k k k

i i iD D c T

1 1

1

( ) ( )

1( )
( ) ( )

( ) ,
2

k k

T i T ik

T i

D D
d




( ) ( ) ( )( ) ( ) ,k k k

i i ir r r  

( )

1( ) 2

1( )( )
1,1

( )

1,

1
1 ( ),

2
1

2

k

ik

i kk
ii

k

i

h r
O h

Dh r

D

    



( ) ( )

( )( ) 0,
2

k k

i ik

ir
  

 

( ) ( )

( )( ) 0
2

k k

i ik

ir
  

  . 

Thomas algorithm was used for calculating distribution of 

the 1c (x,t)  salt concentration. And the difference scheme (18), 

(19) consequently was presented in next form:

1 1

1 ( 1) 1 ( 1) 1 ( 1) ( ) 1,( 1)

1, 1 1, 1, 1 1,

( 1) 1 ( 1) 1

1,0 1 1,1 2

( 1) 1 ( 1) 1

1, 3 1, 1 4

,

,

,

k k k k k

i i i i i i i i

k k

k k

n n

a c c c b c c f

c c

c c

   

 

 

 



     


  


  

(20) 

where 

( ) ( ) ( )
1,1

( )

1 1 1 1,

( )
k k k
i i i

i k

i

d r
a

h h D

 
     

, 

( ) ( ) ( )
1, 11

( )

1 1 1 1,

( )
k k k
i i i

i k

i

d r
b

h h D



 

     

, 

( ) ( ) ( )

1, 1 1,

2

1 1

( ) ( ) ( ) ( )1

1, 1 1, 1( )

1 1,

( )

1
1

(( ) ( ) )

k k k

i i i

i

k k k k

i i i ik

i

d d

h
c

r d r d
h D



 



  
 

   
 
    
 
 

, 

1

1

( 1) ( 1)

( ) 1

1

11,( 1) ( 1)

2 2, ( 1) ( 1)
1 1 ( ) 1

1

( )
1

( )

k k

k i i

T i

k k

i i k k

k i i

T i

T T
d

h
f c

h T T
d

h

 





 

 



  
  

     
   
    

  

, 

1

1 0  , 1 1

2 1C  , 1

3 0  , 1 2

4 1C  . 

Finally, the 
1c (x,t) salt concentration distribution at time 

level (k+1) may be presented with the following relation: 

( 1) 1 ( 1) 1

1, 1 1, 1 1

k k

i i i ic c 

     (21) 

where 
1

1

1 1 1 1
,i

i

i i i

b

c a
 



1 1 ( ) 1,( 1)

1,1

1 1 1 1
,

k k

i i i i

i

i i i

a c f

c a





  
 



11, 1,i n   31, ,k n  1 1

1 1 0,    1 1 1

1 2 1 .C   

Thus, the Thomas algorithm was used to solve such kind of 
tridiagonal system of equations [20]. 

Analogical mathematical manipulations were provided for 
equations (3), (5), (6), (7) and (2). Some of them desribed in 
details in following papers [17]. For intraparticle contaminant 
concentration analysis (4) may be used as numerical finite-
difference analysis as well as analytical. Let us show the steps 

for situation when 
0 0( )D q D const   and 

3
0TD  . Thus we

can obtain: 

2 2

0 2

2q q q
D

t r rr

   
  

  
(22) 

The solution of (22) with appropriate boundary conditions 

0( , ,0) ( )q x r Q r and ( , , ) 0q x R t  can be found in analytical 

way: 

2 2
0

2

1

1
( , , ) sin

n D t

R
n

n

n r
q x r t e

r R

 




  , (23) 

where 0

0

2
( )sin

R

n

n r
rQ r dr

R R


   . 

Let us find the analytical solution of (22) for the case 

where the doundary condition is not homogeneus: 

1( , , )q x R t Q , (24) 
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where 
1Q const . 

To reduce the nonhomogeneous boundary condition to 

homogeneous boundary condition, let us use the following 

substitution 

1( , , ) ( , , )q x r t u x r t Q  , (25) 

where ( , , )u x r t  – is the unknown function. Then 

q u

t t

 


 
, 

2 2

2 2

q u

r r

 


 
, 

q u

r r

 


 
, 

1 1( , , ) ( , , )q x R t u x R t Q Q   , 

1 0( , ,0) ( , ,0) ( )q x r u x r Q Q r   . 

And hence 

( , , ) 0u x R t  , 

0 1( , ,0) ( )u x r Q r Q  . 

Thus, we have the following boundary-value problem for 

the function ( , , )u x r t : 

2

0 2

2u u u
D

t r rr

   
  

  
, X , (0, )r R , 0t  , (26) 

0 1( , ,0) ( )u x r Q r Q  , X , (0, )r R , (27) 

( , , ) 0u x R t  , X , 0t  . (28) 

And the solution of (26)-(28) is the following: 
2 2

0

2

1

1
( , , ) sin

n D t

R
n

n

n r
u x r t e

r R

 




  , (29) 

where 0 1

0

2
( ( ) )sin

R

n

n r
r Q r Q dr

R R


   . 

Returning to the replacement (7), we obtain the analytical 

solution (22) with the appropriate boundary conditions in the 

form of the following function: 
2 2

0

2

1

1

1
( , , ) sin

n D t

R
n

n

n r
q x r t Q e

r R

 




   , (30) 

where 0 1

0

2
( ( ) )sin

R

n

n r
r Q r Q dr

R R


   . 

CONCLUSION 

The physical problem of soil purification was formulated 
according to agroindustry requirements and critical analysis of 
a number of scientific papers. The nonlinear mathematical 
model of the contaminant vertical migration in unsaturated 
catalytic porous media to the filter-trap in isothermal 
conditions was defined. Catalytic porous media were presented 
with colloid nanoadsorbents (e.g. nanosapropel). The 
mathematical model took into account the micro and the 
meso/macro scale factors of the heat and mass transfer 
processes. The numerical and analytical solutions of the 
complicated boundary-value problem have been proposed. 
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