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Abstract— The process of resonance oscillations of a 

cantilever-fixed polymer rod with a rectangular cross section is 

considered. The values of the resonant frequencies of the own 

oscillations of the rod were obtained. The possibility of 

determining the real and imaginary parts of a complex dynamic 

Young's modulus of a polymeric rod at basic resonance 
frequency is shown. 
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amplitude, Young's dynamic modulus 

I. INTRODUCTION

Young's complex dynamic modulus (E*) and the tangent of 
mechanical losses (tgδ) of a number of polymeric materials, the 
method of forced resonant oscillations of a cantilever-fixed 
sample was used as a rod of rectangular shape at sound 
frequencies [1]. 

The essence of the method is to measure the amplitude of 
the oscillation (А) of the free end of the rod when changing the 
frequency of the driving force applied to the other fixed end. 

II. VIBRATIONS SIMULATION AND RESONANCE FREQUENCY

DETERMINATION

The behavior of a sample of a polymer material (fig. 1) 
during oscillations under the disturbing force is described by 
the following differential equation [2]: 
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where  t,xu  is function of the dependence of points 

transverse displacements of the rod axis on the coordinate x 

and time t;  is the density of the polymer material.  

The solution of equation (1) is represented as a harmonic 
function 

Figure 1.  Specimen and its vibrating coordinate system 
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then, we get 
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where k* complex wave number of oscillations per bend;  
cyclic oscillation frequency. 

The general solution of equation (3) is as follows 
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where Ai arbitrary constants. 

The boundary conditions for our problem are as follows 
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where l the length of the sample. 

The integral of equation (3) satisfying the conditions at the 
end х = 0 has the following form: 
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The conditions at the end х = l are expressed by the 
following equations 
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where 
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or 

 01lkcoslchk ** . 

Putting ibalk*   at the resonance of the rod in the 

conditions of 0;  baa i , enables to obtain a ratio for the 

sample amplitude oscillations [3] 
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where ai the roots of the equation (9), С some constant, which 
can be determined from the results of the experiment. 

The values a of and b are defined as follows 
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moreover, for a rectangular rod 
12

d
 , d is the thickness of 

the sample. 

The first four roots of the equation 

 9965,10;7,8548;6941,4;8751,1kl . 

On fig. 2 presents the dependence of the normalized 
amplitude X on the length of the rod for four values of kl. 

According to |Х| measurements of the sample of transverse 
oscillations at different frequencies, a resonance curve is 
constructed, which parameters are the frequency of oscillations 

(f) and the ratio of amplitudes ( max| | | |X X ), where Хmaх is the

maximum value of the amplitude corresponding to the 
principal resonant frequency (fr). For fr determine the width of 

the resonance curve (fr) at the level 
max| X | 2 . 

Resonant oscillation frequencies in experimental studies 
can be modified by the polymer form factor (l/d) of the sample. 



 Figure 2.  Normalized amplitude dependences for four values of ai

In this case, at the fundamental resonant frequency (fr,) 
which corresponds to the smallest root of equation (9), we 

obtain the following relation for E 
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For the value of tgδ we have
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Accordingly, the imaginary part (E) of complex E* is 
defined as follows 

 tgEE   5

In this case, we can determine the value of E* in the 
following way: 
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