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Abstract—The article compares two ways of solving the 

arithmetic operations sign placement problem: method based on 

recursion and dynamic programming based one which uses the 

memoization. Limitations on the intermediate results of the 

problem solution are identified and justified. It is shown that the 

use of memoization to cut off ineffective search options makes it 

possible to accelerate the corresponding algorithms execution by 
tens times. 
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I. INTRODUCTION

As it's known, programming memoization is the storing 

code snippets to prevent recalculations [1]. Traditionally, 

memoization is used when memorizing the results of a function 

for the given parameters values. Then at repeated calls of the 

same function with the same parameters the stored value is 

returned at once, and the same calculations are not performed 

again (for example, for the recurrent calculations problem of 

the factorials sequence [2]). Also memoization is used not only 

to increase the speed of program execution, but also, for 

example, during recursive parsing in a generalized descending 

algorithm [3] or when tabulating predicate values in logical 

programming languages [1]. In this way, memoization makes it 

quicker to perform calculations, although it does require 

memory costs to save the calculation results. In this article we 

show how memoization can be used to speed up arithmetic 

signs placement problem. 

II.  PROBLEM STATEMENT. LITERARY SOURCES ANALYSIS

Arithmetic sign placement problems are offered are widely 

used in the educational process, in mathematics and computer 

science competitions both in schools and universities. It is clear 

that we would like to get all the solutions for every arithmetic 

operator sign placement task quickly so developing software to 

solve these problems effectively is a pressing problem today. 

Traditionally it is suggested to place the arithmetic operations 

signs and parentheses between the given digits of the entered 

line so that to maximize the value of the arithmetic expression 

obtained in this type problems. The following problems are 

solved using the principle of optimality on the snippets [4] of 

the dynamic programming method [5], since it is not necessary 

to store all possible values of the arithmetic expressions 

obtained for each digits sequence of the entered string, and it is 

sufficient to remember only that signs sequence at which the 

resulting arithmetic expression value will be maximal. We 

consider a more complex problem, in which we need to 

minimize the number of arithmetic operations for each value 

of the expression for the next sequence of digits, which starts 

from the beginning of the line. Let us explore, for example, 

ways to accelerate resolution of task D from 1/8 of the ACM-

ICPC 2018 Command Program Olympiad, held in Ukraine on 

April 21, 2018 by memoizing. This task was solved by only a 

few teams at the Olympics, which also indicates the relevance 

of this study. The condition of this problem is formulated in the 

paraphrased form as follows: 

Task D. Strange Equation. Write the program that inserts 

the least number of operations to the left part of the string 

a = s (0 ⩽ a < 101000, 0 ⩽ s ⩽ 5000) so that the expression is 

correct. The numbers in the corrected equation may contain an 

arbitrary number of leading zeros. If the task has multiple 

solutions, output any of them. For example, for input string 

4475 = 56, 4 + 47 + 5 = 56 or 44 + 7 + 5 = 56 should be 

displayed. The task should take up to 1.5 seconds to complete. 

At first glance, it seems that this task could be solved by the 

direct iteration method [6]: after each digit, except the last one, 
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there may be a '+' sign or may not be. That is, there are two 

options. The total count of different variants of arithmetic 

operations sign placement between all the numbers of the 

corrected equations is 2countDigit-1. Given the limitations of the 

task, this number can reach 2999, which makes it impossible to 

solve the task in the allotted time by the mentioned direct 

iteration method. Therefore, we propose options for solving the 

problem by recursion and dynamic programming with 

optimality in the prefix [5], using memoization. 

III. LIMITATIONS ON INTERMEDIATE RESULTS

It is clear that after reading the input line, a must be a string 

and s must be a number. Let countDigit = length(a) is the 

count of digits in the left part of expression a = s, 

  ,. iaToIntConvertdigiti   1,0  countDigiti  is the current 

digit from this part, and 



j

il

l

lj

ji digitnumber 10,  is the 

decimal number that starts with idigit and ends with jdigit . 

Let us analyze the four-tier possible solution tree for the 

example of the task condition given in fig. 1. The top of this 

tree corresponds to the initial digit digit0, and each subsequent 

level are options for including the next digit. To ensure the 

compactness of the tree at its fourth level, only the values of 

the left parts of the expressions are given. 

Figure 1.  Tree of possible variants for expression 4475=56 

With each next digit, the count of variants is doubled, as 

this digit can both be added to each of the previous variants 

(it's indicated by a dotted line between the blocks on fig. 1) and 

accession at the end of the last addition to them (it's indicated 

by a solid line between the blocks and by '&' in the middle 

blocks). 

Limitations on the intermediate results follow from the 

following considerations: 

1. The inclusion of each digit does not reduce (it always

increases if it is not zero) the value in the left part of

the expression. The smallest value of the left side will

be when inserting plusses between all digits, and the

largest one will be when pluses will be absent.

Therefore, expressions in which the last addition or

the entire sum exceeds s should be excluded from

further consideration. Such blocks are shaded 

diagonally on fig. 1. For the example given, such 

expressions make it possible to reduce the number of 

calculations in the third tier 25%, and in the fourth one 

by 62.5%. 

2. It’s impossible to combine branches with the same

expressions values at each level, since further joining

of the following digits can give rise to different

variants. For example, it’s impossible to combine two

variants on third tier with the values 51 (displayed on a

gray background on fig. 1), since at the fourth tier after

the accession of digit 5, they give rise to two different

variants with the values 479 and 119. Although,

adding this digit gives two equal values 56. Therefore,

combining variants with the same values at the

same tier is only advisable when those variants have

the same last addition. In other words, it’s advisable

to combine variants with the same values only before

adding. Based on the task statement, for the further

consideration of such variants the one that has fewer

pluses should be leaved.

3. At the last tier, among all the variants, it’s necessary to

choose the one, which is, first, equal to s, and, second,

among all variants equal to s, has the least number of

pluses. For example, on fig. 1 every of two options

with value 56 on forth tier can be left out, since each of

them has two pluses. Then it’s necessary to define the

pluses that form the selected variant (the blocks of this

path are shaded horizontally on fig. 1).

IV. A RECURSIVE METHOD OF SOLVING THE ARITHMETICAL 

SIGNS PLACEMENT TASK 

The left side value does not decrease with each addition. 

Therefore, in order to solve this task, it is necessary to divide 

the total sum s, written in the right-hand side between the 

additions of the left-hand side and choose among all such 

distributions the one containing the least number of pluses. 

Therefore, let examine the mechanism of procedure InsertPlus, 

written by C# execution, for insertion the next plus sign after 

each valid number istartPosnumber ,  (not greater than 

remainder – retained balance s), if countLeftPlus has already 

met before startPos position: 

static void InsertPlus(int startPos, 

  int countLeftPlus, int remainder) 

This procedure is aimed for finding the smallest number of 

pluses for the distribution of s between the left-hand side 

additions, so if the number of pluses has accumulated to the 

left of the startPos position equal to the minimum at this time 

for such distributions, then placing the following pluses is no 

longer relevant: 

 {if (countLeftPlus == minCountPlus) 
   return; //a better distribution can't be got 

4 

4+4=8 4&4=44 

4+4+7=15 4+4&7=51 4&4+7=51 4&4&7=447 

20 83 56 479 56 119 452 4475 

digit0=4 

digit1=4 

digit2=7 

digit3=5 
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Otherwise this procedure recursively generates numbers 

istartPosnumber ,  by increasing i until all the digits of the left part 

are processed or the next number does not exceed the retained 

balance remainder: 

  int number = 0; //variable for valid numbers 
  int i = startPos, last; 
  //previous insignificant zeros are skipped 
  while (i<countDigit-1 && digit[i] == 0) i++; 
  while (i < countDigit) 
   {//last indicates the last digit processed, 
    //and i indicates the next digit 
    number = number * 10 + digit[last=i++]; 
    if (number > remainder) 
     return; } 

If all the digits of the left part are processed and the next 

number coincides with the undistributed remainder (i.e. the 

total sum of regular additions of the left part is equal to s) and 

the received number of pluses is less than the minimum at this 

time, then we remember the received number of pluses and 

their positions: 

    if (i==countDigit) 
     {if (number == remainder) 

 if (countLeftPlus < minCountPlus) 

  {minCountPlus = countLeftPlus; 
  for (int j = 0; j < minCountPlus; j++) 
    minPozPlus[j] = pozPlus[j]; } 

The procedure is completed after processing all the digits of 

the left side: 

return; } 

Otherwise, if after the formed number istartPosnumber ,  there are 

still numbers, then we fix '+' after that number and place the 

pluses recursively starting from the next digit. In this case, the 

retained balance is reduced by a number istartPosnumber , : 

m:  pozPlus[countLeftPlus] = last; 
    InsertPlus(i, countLeftPlus + 1, 

 remainder - number); }} 

Before calling this procedure for the first time, we put a 

minimum number of pluses equal to the number of digits on 

the expression left side. Any acceptable variant of pluses 

placement between these digits provides the less count of them 

(after all it is always possible to put less pluses between digits 

than there are digits). Therefore, if the minimum number 

remains unchanged after recursive placement of the pluses in 

the whole left part, then it is impossible to place them 

correctly: 

minCountPlus = countDigit; 
/* we distribute the right part from the 
beginning of the left one */ 
InsertPlus(0, 0, s); 
if (minCountPlus == countDigit) 
 {Console.WriteLine("Problem solving is absent"); 
  return; } 

Otherwise, the pluses between the digits of the left side are 

inserted and the result is output: 

string res = ""; j=0; //the next plus index 
for (i = 0; i < countDigit; i++) 
 {res+= a[i].ToString(); 
  if (j < minCountPlus && minPozPlus[j] == i) 
   {res += "+"; j++; }} 
res += "=" + s.ToString(); 
Console.WriteLine(res); 

The above recursive procedure for solving the problem, of 

course, takes much less than the 2countDigit-1 placement options, 

since it takes into account the first and last restrictions on the 

intermediate results from the previous section. But at the 

maximum countDigit and s values, this procedure takes longer 

than twenty-four hours (!). Therefore, let's speed up this 

procedure using memoization. To do this, we keep minimum 

number of pluses placed on the left for each digit and each 

subsequent unallocated remainder in the two-dimensional 

array. These values prevent further recursive calls if you need 

to distribute the same remainder after the same position, and 

the number of pluses on the left has not decreased (in fact, this 

is a pooling of intermediate results under the second 

constraint). The code snippet for such an acceleration of the 

above procedure is inserted before the mark m і and may look 

like this: 

/* if such a remainder was considered from this 
position and the number of pluses on the left 
was not greater */ 
if (prevCountPlus[last, remainder-number]>0 && 
    prevCountPlus[last, remainder-number]<= 

countLeftPlus) 

 continue; //we move to the next digit 
//else we remember less count of pluses 

prevCountPlus[last, remainder-number] = 
  (short)countLeftPlus; 

Such memoization speeds up the execution of the above 

procedure at maximum values of countDigit and s up to 11.6 s 

(in more than 7000 times), although it requires an additional 

2×(countDigit-1)×s bytes of memory to store the 

prevCountPlus array and still does not satisfy the time limit 

(1.5 s) of solving the task. So, let's look at another way to 

solve it. 

V. SOLUTION OF ARITHMETIC OPERATIONS SIGN PLACEMENT

PROBLEM USING DYNAMIC PROGRAMMING METHOD

We give the recurrent formulae for the direct course of

solving the problem by the dynamic programming method. Let 

the system state variable ji, be the accumulated j-s sum from

the beginning of the string to the opposition i. It is clear that 

 00,0 digit  

As noted, each subsequent digit digiti increases the number 

of options twice, as this digit can both be added to each of the 
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previous accumulated sums ji ,1 , and attached to its last

number jilastNumber ,1 . So, 

    

,12,0,1,1

number,oddisif,

9

number,evenisif,

2/1,1/21-j1,-i

j/21,-i

,






















i

i

ji

i

ji

jcountDigiti

jdigit

lastNumber

jdigit






 

where 

 ,00,0 digitlastNumber  

 
,

1, 1 /2

, if is even number,

10 ,

if is odd number.

i

i j
ii j

digit j

lastNumber
lastNumber digit

j

 





   




 

The upper branches in (2), (4) correspond to the addition 

of the next digit, and the lower ones correspond to the 

attaching the last digit. Let us now denote the number of 

pluses in the formation of the accumulated sum ji, by

jicountPlus , . Then the objective function of the problem is 

given as follows: 

 ,00,0 countPlus 

 

1, /2

,
1, 1 /2

1, if is even,

, if is odd.

i j

i j
i j

countPlus j
countPlus

countPlus j



 


 


 

To apply the recurrence relations (2), (4), (6) to forming the 

problem solution, we first determine the smallest number of 

addition operations in the whole string a and the variant index 

at which this minimum is reached: 

 

.|

,|min

*
1

1

,1

*

1

,1,1
120

minPluscountPlusindex

scountPlusminPlus

countDigit

countDigit

indexcountDigitcountDigit

jcountDigitjcountDigit
j




















An index of the variant that provides the total minimum 

number of pluses for each of the preceding characters is 

calculated iteratively in the process of dynamic programming 

method reverse: 

   .0,2,2/*

1

*   countDigitiindexindex ii  

Finally in the problem solution we insert pluses between all 

adjacent characters i and i+1 on the a left side when 

*
1

* ,1, 


ii indexiindexi
countPluscountPlus  (i.e. the minimum number 

of pluses from the string beginning to adjacent characters is 

different). 

As noted, given the constraints of the problem, the 

number ji, reach 2999, which makes it impossible to solve it

within the allotted time directly by relations (1) - (6). 

Therefore, for ji, we take into account and strengthen the first

two constraints given in the third section (the third of these 

constraints is taken into account by relations (7), (8)). 

The first of these constraints is formalized in the form 

sji , . Given that with each digit the accumulated amounts 

increase by at least this digit, we tight this limit to 

 





1

1

,

countDigit

ik

kji digits  

For long strings of the form a = s this restriction allows to 

reject more than 90% of the system states ji, .

The second restriction provides for the possibility of 

rejection ,, ji  if, when adding the next digit, the previous 

accumulated sum j/21,-i  can be provided with no more pluses, 

ie rejection is possible if there is jk   (j and k are even), such 

that 

 ., 2/,12/,12/,12/,1 kijikiji countPluscountPlus     

To implement these limitations, we apply memoization: instead 

of analyzing for each 2/,1 ji all the previously calculated

2/,1 ki and corresponding amounts of pluses, we create a one-

dimensional array minPlusPrevSuma, in which for each 

calculated amount accumulated up to the previous digit the 

minimum number of pluses is stored. Then, when adding the 

next digit, we save each accumulated amount for the first time 

only, increasing the minimum number of pluses to the previous 

digit by "one". Other variants with the same cumulative 

amount can be ignored when adding the same digit. The 

minPlusPrevSuma array is formed from the 

minPlusCurrentSuma array, which contains the minimum 

number of pluses up to the current digit, including for each 

calculated accumulated sum, and is also used to form the result 

string. 

Using in practice the recurrent relations (2), (4), (6), we 

only store the accumulated sums ji, , that satisfy the

constraints (9), (10), and, therefore, it is impossible to use (8) 

for the reverse. Therefore, to implement the reverse of the 

dynamic programming method, we create a two-dimensional 

array of digits in the last added number arrayCDLN[i, suma] 

(abbreviation of array of Counter Digits in the Last Number) 

for each position i and the accumulated sum of suma. He same 

array is used for checking the same accumulated sum in 

relation to the next digit. 
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A snippet of the C# program for "pluses" placement using 

dynamic programming is given below. As follows from (1) – 

(6), each variant of the accumulated sum is characterized by the 

last addition and the number of "pluses". Therefore, to store 

such variants, we create a suitable structure, where the field 

suma contains ji, :

struct Variant 
 {public int suma, lastNumber; 
  public short countPlus; } 

At the beginning of the program, we form arrays of digits 

and limits on the accumulated amounts for each position on the 

right (9): 

countDigit=a.Length; 
digit = new int[countDigit]; 
for (i = 0; i < countDigit; i++) 

 digit[i] = a[i] - 48; 
//the maximum amount allowed for each position 
int[] maxSuma = new int[countDigit]; 
maxSuma[countDigit - 1] = s; 
for (i = countDigit - 2; i >= 0; i--) 
 maxSuma[i] = maxSuma[i + 1] - digit[i + 1]; 

We also create an array of digits count in the last added 

number for each allowed position and the accumulated sum, 

two arrays to store the minimum number of "pluses" for the 

options of the previous and current positions, declare lists of 

variants of these positions and form an option for the first 

digit: 

short[,] arrayCDLN = new short[countDigit, s+1]; 
int[] minPlusPrevSuma = new int[s + 1]; 

int[] minPlusCurrentSuma = new int[s + 1]; 
List<Variant> prevVariant=new List<Variant>(1); 
List<Variant> currentVariant, 
//we form a node from the first digit 
Variant v; 
v.suma = v.lastNumber = digit[0]; //(1), (3)
v.countPlus = 0; //(5)
prevVariant.Add(v);
//number includes one digit
arrayCDLN[0, v.suma]= 1;

During the direct course of the dynamic programming 

method we create a list with double capacity relative to the 

number of variants of the previous position, because to the 

previous variants the next digit can be added as well as 

attached. For the option of addition the last digit, we save each 

received amount only once - with a minimum number of 

"pluses": 

//the direct course of the dynamic programming method 

for (i = 1; i < countDigit; i++) 
 {currentVariant=new 

 List<Variant>(prevVariant.Count*2); 
  //adding a digit to the variants of the previous digit 
  for (j = 0; j < prevVariant.Count; j++) 
   {suma = prevVariant[j].suma + digit[i]; 

 //implementation of the constraint (9) 
    if (suma>maxSuma[i]) continue; 

 /*  we note if such a sum has not yet been met 
 with current digit (restriction (10)) */ 

    if (arrayCDLN[i,suma]==0) 
     {//we form a new node 

v.suma = suma; //(2) for even ones
v.lastNumber = digit[i]; //(4) for even
/* the number of "pluses" is the minimum of all

the options that provided the previous amount*/

countPlus = (short)
 (minPlusPrevSuma[prevVariant[j].suma]+1); 
v.countPlus = countPlus; //(6) for even
currentVariant.Add(v); //note option
minPlusCurrentSuma[suma] = countPlus;
//the last adding contains only one digit
arrayCDLN[i, suma] = 1; }}

If the next digit is attached to the variants of the previous 

one (in formulas (2), (4), (6) these are branches for odd), then 

we only reject variants that do not satisfy the constraints (9): 

  for (j = 0; j < prevVariant.Count; j++) 
   {suma = prevVariant[j].suma + 
     prevVariant[j].lastNumber*9+digit[i];//(2) 
    //implementation of the constraint (9) 

 if (suma > maxSuma[i]) continue; 
    v.suma=suma; 
    v.lastNumber=prevVariant[j].lastNumber*10+ 
     digit[i]; //(4) attaching the digit 
  v.countPlus=prevVariant[j].countPlus; //(6) 

    currentVariant.Add(v); 
    /* record the variant if such amount has not 
    yet met relative to this digit, or was with 
    more "pluses" */ 
    if (arrayCDLN[i, suma] == 0 || 

  (arrayCDLN[i, suma]!=0 && v.countPlus< 
    minPlusCurrentSuma[suma])) 

     {minPlusCurrentSuma[suma] = v.countPlus; 
 /* changing the length of a number when 
 attaching a digit */ 
arrayCDLN[i, suma] = (short) 
 (arrayCDLN[i-1, prevVariant[j].suma]+1); 

     }} 
  /* moving to the next digit current the minimum 
  numbers of "pluses" become preliminary */ 
 prevVariant = currentVariant; 
  prom = minPlusPrevSuma; 
  minPlusPrevSuma = minPlusCurrentSuma; 

  minPlusCurrentSuma = prom; } 

In the process of reverse course of the dynamic 

programming method, we attach the digits from the end, 

focusing on the number of digits of the last addition: 

if (arrayCDLN[countDigit-1,s]!=0) 
 {string res = '=' + s.ToString(); 

  i = countDigit - 1; //processing position 
 suma = s; //undistributed remainder at left side 
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  while (i >= 0) 
  {//the length of the last addition 
   j = arrayCDLN[i, suma]; 

   int multiplier=1; //junior grade weight 
   while (j>0) 
   {res = s[i].ToString() + res; 
    suma-=digit[i]*multiplier; 

 /* the weight of the previous digit in 
    the decimal system */ 
    multiplier*=10; 

    i--; //move left in the left side 
    j--;}; //moving by the digits of the last number 
   if (i>=0) //if there are still additions 
    res = "+"+res; } 
  Console.WriteLine(res); } 
else 
 Console.WriteLine("No issues”); 

At maximum countDigit and s values without memoization 

(that is, finding the minimum number of pluses by directly 

searching the prevVariant and currentVariant list items 

without using the minPlusPrevSuma and minPlusCurrentSuma 

arrays), this program takes 14.76 s, and with memoization 

only 0.39 s. That is, the memoization in this case accelerated 

the execution of the program by 37 times and allowed to 

satisfy the time limit (1.5 s) for solving the problem. For these 

values, the dynamic programming method made it possible to 

solve the problem of recursive subroutine calls 29 times faster, 

primarily by avoiding the repeated storage of values in the 

local variables of each of these calls. It is also interesting that 

the dimensions of the arrayCDLN array to provide a 

backward dynamic programming method are almost identical 

to the size of the recursive memoization array, that is, the 

program in this section does not use more RAM than the 

program in the previous section. 

VI. EXPERIMENTAL RESULTS

In conclusion, let's analyze the performance metrics for 

these two ways to solve a given problem for three arbitrary a 

of 1000 digits 5000s  (tabl. 1).  

TABLE I.  PERFORMANCE OF "PLUSES" PLACEMENT PROGRAMS FOR 

EXPRESSION А = S AT A LENGTH OF 1000 IN DIGITS FOR DIFFERENT VALUES S 

Indicator 
s 

5000 26726 174144 

Time of placement of recursive calls, s 11.60 220.16 3421 

Time of placement by dynamic programming 

method, s 
0.39 2.21 22 

The ratio of durations of recursive call method 

placement to dynamic programming method 
29.74 99.62 155.45 

Minimum number of "pluses" (reference) 656 472 315 

It's clear that with increasing s the duration of program 

execution increases, because the number of possible batch 

options increases, but the time of arrangement by the method 

of dynamic programming increases more slowly than the time 

of execution of recursive calls, which indicates its advantages. 

CONCLUSIONS 

1. Memoization should be used not only to speed up the
execution of recursive calls, but also to implement the
dynamic programming method and, in general, to reduce
the number of nested cycles, which will significantly
accelerate the execution of programs. At the same time,
only the results of the calculations should be stored, which
can be used in the future repeatedly.

2. In order to accelerate the solution of sequential decision-
making problems, it is advisable to use a dynamic
programming method in the algorithmization process rather
than recursive calls of subroutines. The implementations of
this method, although they require a large amount of
memory to backfire, but each time they do not store in the
stack the values of all local variables for each recursive call.

3. To save RAM, the values of the state variables and the
target function should be stored only for the current and
previous steps of the dynamic programming method, and
for all steps and states of the system, only a minimum of
data should be stored to provide a solution during the
reverse process of this method.

4. In the process of implementing the dynamic programming
method, it is advisable to consider not only the target

function but also the variable ji, of each state. This not

only saves memory while not storing invalid values, but 
also significantly speeds up calculations for future states. 
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