
Using of Memoization in Arithmetic Operations Sign

Placement Problems
 https://doi.org/10.31713/MCIT.2019.05

Oleksandr Shportko

Department of Information Systems and Computing Methods
International University of Economics and Humanities

Academician Stepan Demianchuk

Rivne, Ukraine

ITShportko@ukr.net

Andrii Bomba

Department of applied mathematic
National university of water and environmental engeneering

Rivne, Ukraine

e-mail a.bomba@ukr.net

Kateryna Malash

Department of Computer Sciences and Applied Mathematics

Rivne State University of Humanities

Rivne, Ukraine

katemalash@gmail.com

Abstract—The article compares two ways of solving the

arithmetic operations sign placement problem: method based on

recursion and dynamic programming based one which uses the

memoization. Limitations on the intermediate results of the

problem solution are identified and justified. It is shown that the

use of memoization to cut off ineffective search options makes it

possible to accelerate the corresponding algorithms execution by
tens times.

Keywords—memoization; dynamical programming prolems;

arithmetic operations sign placement

I. INTRODUCTION

As it's known, programming memoization is the storing

code snippets to prevent recalculations [1]. Traditionally,

memoization is used when memorizing the results of a function

for the given parameters values. Then at repeated calls of the

same function with the same parameters the stored value is

returned at once, and the same calculations are not performed

again (for example, for the recurrent calculations problem of

the factorials sequence [2]). Also memoization is used not only

to increase the speed of program execution, but also, for

example, during recursive parsing in a generalized descending

algorithm [3] or when tabulating predicate values in logical

programming languages [1]. In this way, memoization makes it

quicker to perform calculations, although it does require

memory costs to save the calculation results. In this article we

show how memoization can be used to speed up arithmetic

signs placement problem.

II. PROBLEM STATEMENT. LITERARY SOURCES ANALYSIS

Arithmetic sign placement problems are offered are widely

used in the educational process, in mathematics and computer

science competitions both in schools and universities. It is clear

that we would like to get all the solutions for every arithmetic

operator sign placement task quickly so developing software to

solve these problems effectively is a pressing problem today.

Traditionally it is suggested to place the arithmetic operations

signs and parentheses between the given digits of the entered

line so that to maximize the value of the arithmetic expression

obtained in this type problems. The following problems are

solved using the principle of optimality on the snippets [4] of

the dynamic programming method [5], since it is not necessary

to store all possible values of the arithmetic expressions

obtained for each digits sequence of the entered string, and it is

sufficient to remember only that signs sequence at which the

resulting arithmetic expression value will be maximal. We

consider a more complex problem, in which we need to

minimize the number of arithmetic operations for each value

of the expression for the next sequence of digits, which starts

from the beginning of the line. Let us explore, for example,

ways to accelerate resolution of task D from 1/8 of the ACM-

ICPC 2018 Command Program Olympiad, held in Ukraine on

April 21, 2018 by memoizing. This task was solved by only a

few teams at the Olympics, which also indicates the relevance

of this study. The condition of this problem is formulated in the

paraphrased form as follows:

Task D. Strange Equation. Write the program that inserts

the least number of operations to the left part of the string

a = s (0 ⩽ a < 101000, 0 ⩽ s ⩽ 5000) so that the expression is

correct. The numbers in the corrected equation may contain an

arbitrary number of leading zeros. If the task has multiple

solutions, output any of them. For example, for input string

4475 = 56, 4 + 47 + 5 = 56 or 44 + 7 + 5 = 56 should be

displayed. The task should take up to 1.5 seconds to complete.

At first glance, it seems that this task could be solved by the

direct iteration method [6]: after each digit, except the last one,

Modeling, Control and Information Technologies - 2019

202

mailto:ITShportko@ukr.net

there may be a '+' sign or may not be. That is, there are two

options. The total count of different variants of arithmetic

operations sign placement between all the numbers of the

corrected equations is 2countDigit-1. Given the limitations of the

task, this number can reach 2999, which makes it impossible to

solve the task in the allotted time by the mentioned direct

iteration method. Therefore, we propose options for solving the

problem by recursion and dynamic programming with

optimality in the prefix [5], using memoization.

III. LIMITATIONS ON INTERMEDIATE RESULTS

It is clear that after reading the input line, a must be a string

and s must be a number. Let countDigit = length(a) is the

count of digits in the left part of expression a = s,

  ,. iaToIntConvertdigiti  1,0  countDigiti is the current

digit from this part, and 



j

il

l

lj

ji digitnumber 10, is the

decimal number that starts with idigit and ends with jdigit .

Let us analyze the four-tier possible solution tree for the

example of the task condition given in fig. 1. The top of this

tree corresponds to the initial digit digit0, and each subsequent

level are options for including the next digit. To ensure the

compactness of the tree at its fourth level, only the values of

the left parts of the expressions are given.

Figure 1. Tree of possible variants for expression 4475=56

With each next digit, the count of variants is doubled, as

this digit can both be added to each of the previous variants

(it's indicated by a dotted line between the blocks on fig. 1) and

accession at the end of the last addition to them (it's indicated

by a solid line between the blocks and by '&' in the middle

blocks).

Limitations on the intermediate results follow from the

following considerations:

1. The inclusion of each digit does not reduce (it always

increases if it is not zero) the value in the left part of

the expression. The smallest value of the left side will

be when inserting plusses between all digits, and the

largest one will be when pluses will be absent.

Therefore, expressions in which the last addition or

the entire sum exceeds s should be excluded from

further consideration. Such blocks are shaded

diagonally on fig. 1. For the example given, such

expressions make it possible to reduce the number of

calculations in the third tier 25%, and in the fourth one

by 62.5%.

2. It’s impossible to combine branches with the same

expressions values at each level, since further joining

of the following digits can give rise to different

variants. For example, it’s impossible to combine two

variants on third tier with the values 51 (displayed on a

gray background on fig. 1), since at the fourth tier after

the accession of digit 5, they give rise to two different

variants with the values 479 and 119. Although,

adding this digit gives two equal values 56. Therefore,

combining variants with the same values at the

same tier is only advisable when those variants have

the same last addition. In other words, it’s advisable

to combine variants with the same values only before

adding. Based on the task statement, for the further

consideration of such variants the one that has fewer

pluses should be leaved.

3. At the last tier, among all the variants, it’s necessary to

choose the one, which is, first, equal to s, and, second,

among all variants equal to s, has the least number of

pluses. For example, on fig. 1 every of two options

with value 56 on forth tier can be left out, since each of

them has two pluses. Then it’s necessary to define the

pluses that form the selected variant (the blocks of this

path are shaded horizontally on fig. 1).

IV. A RECURSIVE METHOD OF SOLVING THE ARITHMETICAL

SIGNS PLACEMENT TASK

The left side value does not decrease with each addition.

Therefore, in order to solve this task, it is necessary to divide

the total sum s, written in the right-hand side between the

additions of the left-hand side and choose among all such

distributions the one containing the least number of pluses.

Therefore, let examine the mechanism of procedure InsertPlus,

written by C# execution, for insertion the next plus sign after

each valid number istartPosnumber , (not greater than

remainder – retained balance s), if countLeftPlus has already

met before startPos position:

static void InsertPlus(int startPos,

 int countLeftPlus, int remainder)

This procedure is aimed for finding the smallest number of

pluses for the distribution of s between the left-hand side

additions, so if the number of pluses has accumulated to the

left of the startPos position equal to the minimum at this time

for such distributions, then placing the following pluses is no

longer relevant:

 {if (countLeftPlus == minCountPlus)
 return; //a better distribution can't be got

4

4+4=8 4&4=44

4+4+7=15 4+4&7=51 4&4+7=51 4&4&7=447

20 83 56 479 56 119 452 4475

digit0=4

digit1=4

digit2=7

digit3=5

Modeling, Control and Information Technologies - 2019

203

Otherwise this procedure recursively generates numbers

istartPosnumber , by increasing i until all the digits of the left part

are processed or the next number does not exceed the retained

balance remainder:

 int number = 0; //variable for valid numbers
 int i = startPos, last;
 //previous insignificant zeros are skipped
 while (i<countDigit-1 && digit[i] == 0) i++;
 while (i < countDigit)
 {//last indicates the last digit processed,
 //and i indicates the next digit
 number = number * 10 + digit[last=i++];
 if (number > remainder)
 return; }

If all the digits of the left part are processed and the next

number coincides with the undistributed remainder (i.e. the

total sum of regular additions of the left part is equal to s) and

the received number of pluses is less than the minimum at this

time, then we remember the received number of pluses and

their positions:

 if (i==countDigit)
 {if (number == remainder)

 if (countLeftPlus < minCountPlus)

 {minCountPlus = countLeftPlus;
 for (int j = 0; j < minCountPlus; j++)
 minPozPlus[j] = pozPlus[j]; }

The procedure is completed after processing all the digits of

the left side:

return; }

Otherwise, if after the formed number istartPosnumber , there are

still numbers, then we fix '+' after that number and place the

pluses recursively starting from the next digit. In this case, the

retained balance is reduced by a number istartPosnumber , :

m: pozPlus[countLeftPlus] = last;
 InsertPlus(i, countLeftPlus + 1,

 remainder - number); }}

Before calling this procedure for the first time, we put a

minimum number of pluses equal to the number of digits on

the expression left side. Any acceptable variant of pluses

placement between these digits provides the less count of them

(after all it is always possible to put less pluses between digits

than there are digits). Therefore, if the minimum number

remains unchanged after recursive placement of the pluses in

the whole left part, then it is impossible to place them

correctly:

minCountPlus = countDigit;
/* we distribute the right part from the
beginning of the left one */
InsertPlus(0, 0, s);
if (minCountPlus == countDigit)
 {Console.WriteLine("Problem solving is absent");
 return; }

Otherwise, the pluses between the digits of the left side are

inserted and the result is output:

string res = ""; j=0; //the next plus index
for (i = 0; i < countDigit; i++)
 {res+= a[i].ToString();
 if (j < minCountPlus && minPozPlus[j] == i)
 {res += "+"; j++; }}
res += "=" + s.ToString();
Console.WriteLine(res);

The above recursive procedure for solving the problem, of

course, takes much less than the 2countDigit-1 placement options,

since it takes into account the first and last restrictions on the

intermediate results from the previous section. But at the

maximum countDigit and s values, this procedure takes longer

than twenty-four hours (!). Therefore, let's speed up this

procedure using memoization. To do this, we keep minimum

number of pluses placed on the left for each digit and each

subsequent unallocated remainder in the two-dimensional

array. These values prevent further recursive calls if you need

to distribute the same remainder after the same position, and

the number of pluses on the left has not decreased (in fact, this

is a pooling of intermediate results under the second

constraint). The code snippet for such an acceleration of the

above procedure is inserted before the mark m і and may look

like this:

/* if such a remainder was considered from this
position and the number of pluses on the left
was not greater */
if (prevCountPlus[last, remainder-number]>0 &&
 prevCountPlus[last, remainder-number]<=

countLeftPlus)

 continue; //we move to the next digit
//else we remember less count of pluses

prevCountPlus[last, remainder-number] =
 (short)countLeftPlus;

Such memoization speeds up the execution of the above

procedure at maximum values of countDigit and s up to 11.6 s

(in more than 7000 times), although it requires an additional

2×(countDigit-1)×s bytes of memory to store the

prevCountPlus array and still does not satisfy the time limit

(1.5 s) of solving the task. So, let's look at another way to

solve it.

V. SOLUTION OF ARITHMETIC OPERATIONS SIGN PLACEMENT

PROBLEM USING DYNAMIC PROGRAMMING METHOD

We give the recurrent formulae for the direct course of

solving the problem by the dynamic programming method. Let

the system state variable ji, be the accumulated j-s sum from

the beginning of the string to the opposition i. It is clear that

 00,0 digit  

As noted, each subsequent digit digiti increases the number

of options twice, as this digit can both be added to each of the

Modeling, Control and Information Technologies - 2019

204

previous accumulated sums ji ,1 , and attached to its last

number jilastNumber ,1 . So,

    

,12,0,1,1

number,oddisif,

9

number,evenisif,

2/1,1/21-j1,-i

j/21,-i

,






















i

i

ji

i

ji

jcountDigiti

jdigit

lastNumber

jdigit






 

where

 ,00,0 digitlastNumber  

 
,

1, 1 /2

, if is even number,

10 ,

if is odd number.

i

i j
ii j

digit j

lastNumber
lastNumber digit

j

 





   




 

The upper branches in (2), (4) correspond to the addition

of the next digit, and the lower ones correspond to the

attaching the last digit. Let us now denote the number of

pluses in the formation of the accumulated sum ji, by

jicountPlus , . Then the objective function of the problem is

given as follows:

 ,00,0 countPlus 

 

1, /2

,
1, 1 /2

1, if is even,

, if is odd.

i j

i j
i j

countPlus j
countPlus

countPlus j



 


 


 

To apply the recurrence relations (2), (4), (6) to forming the

problem solution, we first determine the smallest number of

addition operations in the whole string a and the variant index

at which this minimum is reached:

 

.|

,|min

*
1

1

,1

*

1

,1,1
120

minPluscountPlusindex

scountPlusminPlus

countDigit

countDigit

indexcountDigitcountDigit

jcountDigitjcountDigit
j




















An index of the variant that provides the total minimum

number of pluses for each of the preceding characters is

calculated iteratively in the process of dynamic programming

method reverse:

   .0,2,2/*

1

*   countDigitiindexindex ii  

Finally in the problem solution we insert pluses between all

adjacent characters i and i+1 on the a left side when

*
1

* ,1, 


ii indexiindexi
countPluscountPlus (i.e. the minimum number

of pluses from the string beginning to adjacent characters is

different).

As noted, given the constraints of the problem, the

number ji, reach 2999, which makes it impossible to solve it

within the allotted time directly by relations (1) - (6).

Therefore, for ji, we take into account and strengthen the first

two constraints given in the third section (the third of these

constraints is taken into account by relations (7), (8)).

The first of these constraints is formalized in the form

sji , . Given that with each digit the accumulated amounts

increase by at least this digit, we tight this limit to

 





1

1

,

countDigit

ik

kji digits  

For long strings of the form a = s this restriction allows to

reject more than 90% of the system states ji, .

The second restriction provides for the possibility of

rejection ,, ji if, when adding the next digit, the previous

accumulated sum j/21,-i can be provided with no more pluses,

ie rejection is possible if there is jk  (j and k are even), such

that

 ., 2/,12/,12/,12/,1 kijikiji countPluscountPlus     

To implement these limitations, we apply memoization: instead

of analyzing for each 2/,1 ji all the previously calculated

2/,1 ki and corresponding amounts of pluses, we create a one-

dimensional array minPlusPrevSuma, in which for each

calculated amount accumulated up to the previous digit the

minimum number of pluses is stored. Then, when adding the

next digit, we save each accumulated amount for the first time

only, increasing the minimum number of pluses to the previous

digit by "one". Other variants with the same cumulative

amount can be ignored when adding the same digit. The

minPlusPrevSuma array is formed from the

minPlusCurrentSuma array, which contains the minimum

number of pluses up to the current digit, including for each

calculated accumulated sum, and is also used to form the result

string.

Using in practice the recurrent relations (2), (4), (6), we

only store the accumulated sums ji, , that satisfy the

constraints (9), (10), and, therefore, it is impossible to use (8)

for the reverse. Therefore, to implement the reverse of the

dynamic programming method, we create a two-dimensional

array of digits in the last added number arrayCDLN[i, suma]

(abbreviation of array of Counter Digits in the Last Number)

for each position i and the accumulated sum of suma. He same

array is used for checking the same accumulated sum in

relation to the next digit.

Modeling, Control and Information Technologies - 2019

205

A snippet of the C# program for "pluses" placement using

dynamic programming is given below. As follows from (1) –

(6), each variant of the accumulated sum is characterized by the

last addition and the number of "pluses". Therefore, to store

such variants, we create a suitable structure, where the field

suma contains ji, :

struct Variant
 {public int suma, lastNumber;
 public short countPlus; }

At the beginning of the program, we form arrays of digits

and limits on the accumulated amounts for each position on the

right (9):

countDigit=a.Length;
digit = new int[countDigit];
for (i = 0; i < countDigit; i++)

 digit[i] = a[i] - 48;
//the maximum amount allowed for each position
int[] maxSuma = new int[countDigit];
maxSuma[countDigit - 1] = s;
for (i = countDigit - 2; i >= 0; i--)
 maxSuma[i] = maxSuma[i + 1] - digit[i + 1];

We also create an array of digits count in the last added

number for each allowed position and the accumulated sum,

two arrays to store the minimum number of "pluses" for the

options of the previous and current positions, declare lists of

variants of these positions and form an option for the first

digit:

short[,] arrayCDLN = new short[countDigit, s+1];
int[] minPlusPrevSuma = new int[s + 1];

int[] minPlusCurrentSuma = new int[s + 1];
List<Variant> prevVariant=new List<Variant>(1);
List<Variant> currentVariant,
//we form a node from the first digit
Variant v;
v.suma = v.lastNumber = digit[0]; //(1), (3)
v.countPlus = 0; //(5)
prevVariant.Add(v);
//number includes one digit
arrayCDLN[0, v.suma]= 1;

During the direct course of the dynamic programming

method we create a list with double capacity relative to the

number of variants of the previous position, because to the

previous variants the next digit can be added as well as

attached. For the option of addition the last digit, we save each

received amount only once - with a minimum number of

"pluses":

//the direct course of the dynamic programming method

for (i = 1; i < countDigit; i++)
 {currentVariant=new

 List<Variant>(prevVariant.Count*2);
 //adding a digit to the variants of the previous digit
 for (j = 0; j < prevVariant.Count; j++)
 {suma = prevVariant[j].suma + digit[i];

 //implementation of the constraint (9)
 if (suma>maxSuma[i]) continue;

 /* we note if such a sum has not yet been met
 with current digit (restriction (10)) */

 if (arrayCDLN[i,suma]==0)
 {//we form a new node

v.suma = suma; //(2) for even ones
v.lastNumber = digit[i]; //(4) for even
/* the number of "pluses" is the minimum of all

the options that provided the previous amount*/

countPlus = (short)
 (minPlusPrevSuma[prevVariant[j].suma]+1);
v.countPlus = countPlus; //(6) for even
currentVariant.Add(v); //note option
minPlusCurrentSuma[suma] = countPlus;
//the last adding contains only one digit
arrayCDLN[i, suma] = 1; }}

If the next digit is attached to the variants of the previous

one (in formulas (2), (4), (6) these are branches for odd), then

we only reject variants that do not satisfy the constraints (9):

 for (j = 0; j < prevVariant.Count; j++)
 {suma = prevVariant[j].suma +
 prevVariant[j].lastNumber*9+digit[i];//(2)
 //implementation of the constraint (9)

 if (suma > maxSuma[i]) continue;
 v.suma=suma;
 v.lastNumber=prevVariant[j].lastNumber*10+
 digit[i]; //(4) attaching the digit
 v.countPlus=prevVariant[j].countPlus; //(6)

 currentVariant.Add(v);
 /* record the variant if such amount has not
 yet met relative to this digit, or was with
 more "pluses" */
 if (arrayCDLN[i, suma] == 0 ||

 (arrayCDLN[i, suma]!=0 && v.countPlus<
 minPlusCurrentSuma[suma]))

 {minPlusCurrentSuma[suma] = v.countPlus;
 /* changing the length of a number when
 attaching a digit */
arrayCDLN[i, suma] = (short)
 (arrayCDLN[i-1, prevVariant[j].suma]+1);

 }}
 /* moving to the next digit current the minimum
 numbers of "pluses" become preliminary */
 prevVariant = currentVariant;
 prom = minPlusPrevSuma;
 minPlusPrevSuma = minPlusCurrentSuma;

 minPlusCurrentSuma = prom; }

In the process of reverse course of the dynamic

programming method, we attach the digits from the end,

focusing on the number of digits of the last addition:

if (arrayCDLN[countDigit-1,s]!=0)
 {string res = '=' + s.ToString();

 i = countDigit - 1; //processing position
 suma = s; //undistributed remainder at left side

Modeling, Control and Information Technologies - 2019

206

 while (i >= 0)
 {//the length of the last addition
 j = arrayCDLN[i, suma];

 int multiplier=1; //junior grade weight
 while (j>0)
 {res = s[i].ToString() + res;
 suma-=digit[i]*multiplier;

 /* the weight of the previous digit in
 the decimal system */
 multiplier*=10;

 i--; //move left in the left side
 j--;}; //moving by the digits of the last number
 if (i>=0) //if there are still additions
 res = "+"+res; }
 Console.WriteLine(res); }
else
 Console.WriteLine("No issues”);

At maximum countDigit and s values without memoization

(that is, finding the minimum number of pluses by directly

searching the prevVariant and currentVariant list items

without using the minPlusPrevSuma and minPlusCurrentSuma

arrays), this program takes 14.76 s, and with memoization

only 0.39 s. That is, the memoization in this case accelerated

the execution of the program by 37 times and allowed to

satisfy the time limit (1.5 s) for solving the problem. For these

values, the dynamic programming method made it possible to

solve the problem of recursive subroutine calls 29 times faster,

primarily by avoiding the repeated storage of values in the

local variables of each of these calls. It is also interesting that

the dimensions of the arrayCDLN array to provide a

backward dynamic programming method are almost identical

to the size of the recursive memoization array, that is, the

program in this section does not use more RAM than the

program in the previous section.

VI. EXPERIMENTAL RESULTS

In conclusion, let's analyze the performance metrics for

these two ways to solve a given problem for three arbitrary a

of 1000 digits 5000s (tabl. 1).

TABLE I. PERFORMANCE OF "PLUSES" PLACEMENT PROGRAMS FOR

EXPRESSION А = S AT A LENGTH OF 1000 IN DIGITS FOR DIFFERENT VALUES S

Indicator
s

5000 26726 174144

Time of placement of recursive calls, s 11.60 220.16 3421

Time of placement by dynamic programming

method, s
0.39 2.21 22

The ratio of durations of recursive call method

placement to dynamic programming method
29.74 99.62 155.45

Minimum number of "pluses" (reference) 656 472 315

It's clear that with increasing s the duration of program

execution increases, because the number of possible batch

options increases, but the time of arrangement by the method

of dynamic programming increases more slowly than the time

of execution of recursive calls, which indicates its advantages.

CONCLUSIONS

1. Memoization should be used not only to speed up the
execution of recursive calls, but also to implement the
dynamic programming method and, in general, to reduce
the number of nested cycles, which will significantly
accelerate the execution of programs. At the same time,
only the results of the calculations should be stored, which
can be used in the future repeatedly.

2. In order to accelerate the solution of sequential decision-
making problems, it is advisable to use a dynamic
programming method in the algorithmization process rather
than recursive calls of subroutines. The implementations of
this method, although they require a large amount of
memory to backfire, but each time they do not store in the
stack the values of all local variables for each recursive call.

3. To save RAM, the values of the state variables and the
target function should be stored only for the current and
previous steps of the dynamic programming method, and
for all steps and states of the system, only a minimum of
data should be stored to provide a solution during the
reverse process of this method.

4. In the process of implementing the dynamic programming
method, it is advisable to consider not only the target

function but also the variable ji, of each state. This not

only saves memory while not storing invalid values, but
also significantly speeds up calculations for future states.

REFERENCES

[1] Memoisation – Wikipedia [Online resource]. – Access mode:
https://ru.wikipedia.org/wiki/Мемоизация.

[2] What is the fastest factorial feature in JavaScript? [Electronic

resource]. – Access mode: http://qaru.site/questions/83626/fast-factorial-
function-in-javascript.

[3] P. Norvig, “Techniques for automatic memoization with applications to
context-free parsing,” Computational Linguistics, vol. 17, no.1, 1991, pp

91–98.

[4] The Problem of Arrangement of Signs in Expression - Wikisource
[Electronic resource]. - Access mode:

https://neerc.ifmo.ru/wiki/index.php?title=Задача_о_расстановке_знак
ов_в_выражении.

[5] Dynamic Programming - Wikisource [Electronic resource]. - Access

mode: https://neerc.ifmo.ru/wiki/index.php?title=Динамическое
_программирование.

[6] Complete Search [Online Resource]. - Access mode:

http://znaimo.com.ua/Повний_перебір

Modeling, Control and Information Technologies - 2019

207

https://ru.wikipedia.org/wiki/Мемоизация
http://qaru.site/questions/83626/fast-factorial-function-in-javascript
http://qaru.site/questions/83626/fast-factorial-function-in-javascript
https://neerc.ifmo.ru/wiki/index.php?title=Динамическое_программирование
https://neerc.ifmo.ru/wiki/index.php?title=Динамическое_программирование
https://neerc.ifmo.ru/wiki/index.php?title=%1fДинамическое_программирование
https://neerc.ifmo.ru/wiki/index.php?title=%1fДинамическое_программирование
http://znaimo.com.ua/Повний_перебір

