До питання агрегування прогнозів ансамблю нейронних мереж для обчислення коефіцієнта гідравлічного опору
DOI:
https://doi.org/10.31713/MCIT.2025.105Keywords:
ансамблеве навчання, штучні нейронні мережі, метод Bagging, агрегування прогнозів, коефіцієнт шорсткості Шезі, PythonAbstract
Розглядаються особливості ансамблю нейронних мереж для прогнозування емпіричного коефіцієнта гідравлічного опору у відкритих руслах річок, відомого як коефіцієнт шорсткості Шезі, та підхід для вирішення проблеми агрегування його прогнозів, який ґрунтується на модифікації методу голосування. Представлено результати апробації запропонованого ансамблю нейронних мереж. Реалізацію алгоритмів побудови моделей ансамблю, ансамблевого навчання, агрегування прогнозів штучних нейронних мереж здійснено за допомогою методів програмування Python.
The study examines the features of a neural network ensemble for predicting the empirical hydraulic resistance coefficient in open river channels, known as the Chézy roughness coefficient, and introduces an approach to address the problem of aggregating ensemble predictions based on a modified voting method. The results of testing the proposed neural network ensemble are presented. The implementation of algorithms for ensemble model construction, ensemble training, and aggregation of artificial neural network predictions was carried out using Python programming methods.